

ТЕОРЕТИЧЕСКИЙ ТУР

44th International Chemistry Olympiad

Инструкции

• В выданном вам комплекте объемом 49 страниц вы найдете 8 задач и периодическую таблицу.

- На выполнение работы отводится 5 часов. Начинайте работу только после команды СТАРТ.
- Пользуйтесь только выданными вам ручкой и калькулятором.
- Все решения записывайте в соответствующие поля для ответов. Записи вне полей ответов не проверяются и не оцениваются. Используйте оборотную сторону выданных листов как черновик.
- Приводите вычисления, предшествовавшие получению ответа, только в этом случае вы получите полный балл.
- Закончив работу, положите свои бумаги в конверт, не заклеивая его.
- Вы должны прекратить работу сразу после команды СТОП.
- Не покидайте свое рабочее место без разрешения преподавателя.
- В любой момент вы можете попросить официальную английскую версию заданий.

Физические константы, формулы и уравнения

Постоянная Авогадро, $N_A = 6.0221 \times 10^{23} \text{ моль}^{-1}$

Постоянная Больцмана, $k_{\rm B} = 1.3807 \times 10^{-23} \; \rm Дж \cdot K^{-1}$

Универсальная газовая постоянная, $R = 8.3145 \, \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1} = 0.08205 \, \text{атм} \cdot \text{л} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$

Скорость света, $c = 2.9979 \times 10^8 \text{ м} \cdot \text{c}^{-1}$

Постоянная Планка, $h = 6.6261 \times 10^{-34}$ Дж·с

Масса электрона, $m_e = 9.10938215 \times 10^{-31}$ кг

Стандартное давление, P = 1 бар = 10^5 Па

Атмосферное давление, $P_{\text{атм}} = 1.01325 \times 10^5 \text{ Па} = 760 \text{ мм.рт.ст.} = 760 \text{ Торр}$

Ноль шкалы Цельсия, 273.15 К

1 нанометр (μ_M) = 10^{-9} м

1 пикометр $(nM) = 10^{-12} \text{ м}$

Уравнение окружности, $x^2 + y^2 = r^2$

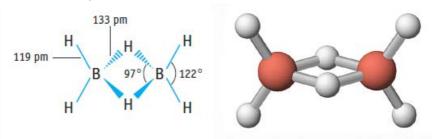
Площадь круга, πr^2

Длина окружности, $2\pi r$

Объем шара, $4\pi r^3/3$

Площадь сферы, $4\pi r^2$

Закон Брэгга-Вульфа: $\sin \theta = n\lambda/2d$


1	1 1 1.00794 H 0.28	2											13	14	15	16	17	18 2 4.00260 He 1.40
2	-	9.01218 Be		Атомный номер——▶				1 1.00794					5 10.811 B 0.89	6 12.011 C 0.77	7 14.0067 N 0.70	8 15.9994 O 0.66	9 18.9984 F 0.64	10 20.1797 Ne 1.50
3	11 22.9898 Na	12 24.3050 Mg	3	26.9815 28.0855 30.9738 32.066 35.4527 3 Al Si P S Cl 1.17 1.10 1.04 0.99							18 39.948 Ar 1.80							
4	39.0983 K	Ca	21 44.9559 Sc	Ti 1.46		Cr 1.25	Mn 1.37	55.845 Fe 1.24	27 58.9332 Co 1.25	28 58.6934 Ni 1.24	63.546 Cu 1.28	65.39 Zn 1.33	31 69.723 Ga 1.35	Ge 1.22	33 74.9216 As 1.20	78.96 Se 1.18	79.904 Br 1.14	
5	37 85.4678 Rb	87.62 Sr	39 88.9059 Y	91.224 Zr 1.60	92.9064 Nb 1.43	95.94 Mo 1.37	43 (97.905) Tc 1.36		45 102.906 Rh 1.34	46 106.42 Pd 1.37	47 107.868 Ag 1.44	48 112.41 Cd 1.49	49 114.818 In 1.67	50 118.710 Sn 1.40	51 121.760 Sb 1.45	127.60 Te 1.37	53 126.904 I 1.33	131.29 Xe 2.10
6		56 137.327 Ba	57-71 La-Lu		73 180.948 Ta 1.43				77 192.217 Ir 1.36	78 195.08 Pt 1.38			81 204.383 TI 1.70	207.2 Pb 1.76	83 208.980 Bi 1.55	84 (208.98) Po 1.67	85 (209.99) At	86 (222.02) Rn 2.20
7	87 (223.02) Fr	88 (226.03) Ra 2.25	89-103 Ac-Lr	104 (261.11) Rf	105 (262.11) Db	106 (263.12) Sg		108 (265) Hs	109 (266) Mt	110 (271) Ds	111 (272) Rg	(285) Cn	113 (284) Uut	114 (289) FI	115 (288) Uup	116 (292) Lv	117 (294) Uus	118 (294) UUo
		57 138.906 La	Ce	Pr	Nd		Sm		Gd		Dy		Er	Tm	Yb	Lu Lu	ı	
		89 (227.03) AC 1.88	90 232.038 Th	91 231.036 Pa	92 238.029 U	93 (237.05) Np	94 (244.06) Pu	95 (243.06) Am	96 (247.07) Cm	97 (247.07) Bk	98 (251.08) Cf	99 (252.08) Es	100 (257.10) Fm	101 (258.10)	102 (259.1)	103 (260.1)		

ЗАДАЧА 1 7.5 балла

a	ı–i	a–ii	a-iii	b	c	очки	баллы
	4	2	2	2	10	20	7.5

а. Гидриды и другие соединения бора

Химию гидридов бора впервые исследовал Альфред Сток (1876-1946). Он охарактеризовал более двадцати нейтральных молекулярных гидридов бора с общей формулой B_xH_y . Самым простым гидридом бора является диборан B_2H_6 .

i. Используя приведенные ниже данные, выведите молекулярные формулы двух других гидридов бора, A и B.

Вещество	Агрегатное состояние (25 °C, 1 бар)	Массовая доля бора, %	Молярная масса (г/моль)		
A	жидкость	83.1	65.1		
В	твердое вещество	88.5	122.2		

A :	B:

іі. Вильям Липскомб получил Нобелевскую премию по химии в 1976 г. за «изучение структуры гидридов бора, проясняющее некоторые проблемы химической связи». Липскомб установил, что во всех гидридах бора каждый атом бора образует обычную двухэлектронную связь хотя бы с одним атомом водорода (связь В–Н). Однако встречаются и связи нескольких иных типов, и Липскомб разработал схему для описания структуры любого борана, в которой она характеризуется так называемым числом styx, где:

s = число мостиков В-Н-В в молекуле,

t = число трехцентровых связей BBB в молекуле

у = число двухцентровых связей В-В в молекуле,

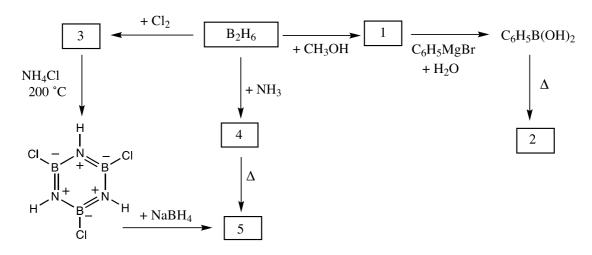
 $x = число группировок <math>BH_2$ в молекуле.

Число styx для B_2H_6 равно 2002. Изобразите структурную формулу тетраборана B_4H_{10} , для которого число styx равно 4012.

NT	Codo
Name:	Code:

ііі. Некоторое соединение имеет молекулярную формулу B_4CCl_6O . Спектроскопические исследования показали, что в молекулу входят два вида атомов бора: с тетраэдрической геометрией и плоской тригональной геометрией. Отношение числа «тетраэдрических» атомов бора числу «плоских тригональных» атомов бора составляет 1:3. Спектральные данные указывают на наличие в молекуле тройной связи $C \equiv O$. Изобразите структурную формулу B_4CCl_6O .

Структурная формула:		


b. Термохимия соединений бора										
Вычислите энтальпию диссо следующую информацию:										
Связь	Энтальпия диссоциации связи (кДж/моль)									
B-Cl	443									
Cl–Cl	242									
Соединение	$\Delta_{\mathrm{f}}H^{\circ}$ (кДж/моль)									
$BCl_3(\Gamma)$	-403									
$B_2Cl_4(\Gamma)$	-489									
Энтальпия диссоциации связі	м =									

Code:

Name:

с. Химия диборана

Приведите структуры каждого из веществ 1–5, зашифрованных на приведенной ниже схеме. Каждое из этих веществ является борсодержащим соединением.

ПРИМЕЧАНИЯ:

- а. Температура кипения вещества **5** равна 55 °C.
- b. Во всех реакциях использовались избытки реагентов.
- с. Понижение температуры замерзания раствора, содержащего $0.312~\rm r$ вещества **2** в $25.0~\rm r$ бензола равно $0.205~\rm ^{\circ}C$. Криоскопическая константа для бензола равна $5.12~\rm ^{\circ}C$ -кг растворителя / моль.

Номер	Структурная формула соединения
1	
2	
3	
4	
5	

ЗАДАЧА 2 7.8 балла

a–i	a–ii	b-i	b-ii	c	очки	баллы
4	4	6	1	5	20	7.8

Соединения платины(II), изомеры, *транс*-влияние

Платина и другие платиновые металлы образуют плоскоквадратные комплексы. Механизмы реакций с участием таких комплексов хорошо изучены. Например, известно, что реакции замещения в таких комплексах проходят с сохранением стереохимической конфигурации.

Также известно, что скорость замещения лиганда X лигандом Y зависит от природы лиганда, находящегося в *танс*-положении по отношению к X, то есть от лиганда T. Этот эффект называется **танс**-влиянием. Ниже приведен ряд лигандов T. В этом ряду скорость реакции замещения лиганда, находящегося в *танс*-положении к T, убывает слева направо:

$$CN^- > H^- > NO_2^-$$
, $I^- > Br^-$, $Cl^- > пиридин, NH3, OH^-, H2O$

При синтезе *цис*- и *транс*- $Pt(NH_3)_2Cl_2$ следует учитывать *транс*-влияние. Синтез *цис*-изомера, который используется в химиотерапии рака и имеет тривиальное название цисплатин, включает реакцию K_2PtCl_4 с аммиаком.

$$\begin{bmatrix} CI & CI \\ Pt & CI \end{bmatrix}^{2-} \xrightarrow{NH_3} \begin{bmatrix} CI & CI \\ Pt & NH_3 \end{bmatrix}^{-} \xrightarrow{NH_3} CI \xrightarrow{NH_3} CI \xrightarrow{NH_3}$$

і. Изобразите структурные формулы всех возможных изомеров плоскоквадратных комплексов платины(II), имеющих состав $Pt(py)(NH_3)BrCl$ (где $py = пиридин, C_5H_5N$).

іі. Запишите схемы реакций, в том числе с промежуточными частицами (частицей), с помощью которых можно получить в водном растворе каждый из стереоизомеров $[Pt(NH_3)(NO_2)Cl_2]^-$, используя в качестве реагентов $PtCl_4^{2-}$, NH_3 и NO_2^- . Реакции кинетически контролируются *транс*-влиянием.

Получение иис-изомера:

Получение транс-изомера:

b. Изучение кинетики реакций замещения с участием плоскоквадратных комплексов

Замещение лиганда X лигандом Y в плоскоквадратном комплексе

$$ML_3X + Y \rightarrow ML_3Y + X$$

может проходить по любому из двух механизмов или по обоим механизмам параллельно:

• *Прямое замещение*: Входящий лиганд Y присоединяется к центральному атому металла, образуя пяти-координационный комплекс, который затем быстро отщепляет лиганд X с образованием продукта ML_3Y :

$$ML_3X \xrightarrow{+Y} [ML_3XY] \xrightarrow{-X} ML_3Y$$

** = скорость-лимитирующая стадия; константа скорости = $k_{\rm Y}$

• Замещение с участием растворителя: Молекула растворителя S присоединяется к центральному атому с образованием ML_3XS , от которого затем отщепляется X с образованием ML_3S . А затем лиганд Y быстро замещает S с образованием ML_3Y .

$$ML_3X$$
 $\xrightarrow{**}$ $[ML_3XS]$ $\xrightarrow{-X}$ $[ML_3S]$ $\xrightarrow{+Y}$ ML_3Y

** = скорость-лимитирующая стадия; константа скорости = $k_{\rm S}$

Общее кинетическое уравнение:

Скорость =
$$k_s[ML_3X] + k_Y[Y][ML_3X]$$

Если [Y] >> [ML₃X], то скорость = $k_{obs} \cdot [ML_3X]$.

Значения k_s и k_Y зависят от реагентов и растворителя.

Одним из примеров является замещение лиганда Cl^- в плоскоквадратном комплексе платины(II) (ML_2X_2) пиридином (C_5H_5N). Учтите, что все, сказанное выше о механизмах для ML_3X , справедливо и для реакций замещения лигандов в ML_2X_2 .

В таблице приведены данные для проходящей в метаноле при 25 °C реакции в условиях, когда концентрация пиридина намного превышает концентрацию исходного комплекса платины.

Концентрация пиридина, моль/л	$k_{\rm obs},{ m c}^{-1}$
0.122	7.20×10^{-4}
0.061	3.45×10^{-4}
0.030	1.75×10^{-4}

і. Рассчитайте значения $k_{\rm s}$ и $k_{\rm Y}$. Приведите правильные размерности для каждой из констант скорости.

Если хотите, можете воспользоваться помещенной ниже сеткой.

_					

$k_S =$	 -	
,		
$k_Y =$	 -	

іі. Какое из приведенных ниже утверждений является правильным, если концентрация пиридина равна 0.10 моль/л? Поставьте галочку в соответствующей ячейке.

Бо́льшая часть комплекса, содержащего пиридин, образуется по механизму «замещение с участием растворителя» $(k_{\rm s})$.
Бо́льшая часть комплекса, содержащего пиридин, образуется путем прямого замещения $(k_{\rm Y})$
Вклад обоих механизмов сопоставим.
Нельзя сделать вывод об относительных количествах продукта, образуемых по каждому из механизмов.

с. Средство для химиотерапии рака

Для более эффективной доставки цисплатина в раковые клетки комплекс платины (IV) присоединили к олигонуклеотиду, который был привит к наночастицам золота.

В некотором эксперименте использовали наночастицы золота диаметром 13 нм. К
каждой наночастице присоединено 90 олигонуклеотидных групп, 98% которых связаны с комплексом Pt(IV).
Наночастицы находятся в растворе объемом 1.0 мл. Концентрация платины в
нем составляет 1.0·10 ⁻⁶ М. Рассчитайте массы золота и платины в этом
растворе . (Плотность золота 19.3 г/см^3).
Масса платины
Масса запата

Code:

Name:

Задача 3 7.5 балла

a	b	c-i	c-ii	очки	баллы	
4	12	6	12	34	7.5	

Тиомолибдат-ион получается из молибдат-иона ${\rm MoO_4}^{2^-}$ заменой атомов кислорода на серу. В природе тиомолибдат-ионы можно найти в глубинах Черного моря, где много сероводорода.

В разбавленных растворах, содержащих молибдат- и тиомолибдат-ионы, устанавливаются следующие равновесия:

$$MoS_4^{2-} + H_2O(1)$$
 \longrightarrow $MoOS_3^{2-} + H_2S(aq)$ $K_1 = 1.3 \times 10^{-5}$ $MoOS_3^{2-} + H_2O(1)$ \longrightarrow $MoO_2S_2^{2-} + H_2S(aq)$ $K_2 = 1.0 \times 10^{-5}$ $MoO_2S_2^{2-} + H_2O(1)$ \longrightarrow $MoO_3S^{2-} + H_2S(aq)$ $K_3 = 1.6 \times 10^{-5}$ $MoO_3S^{2-} + H_2O(1)$ \longrightarrow $MoO_4^{2-} + H_2S(aq)$ $K_4 = 6.5 \times 10^{-6}$ 1 – жидкость, aq – находится в водном растворе

а. Равновесная концентрация ионов MoO_4^{2-} равна 1×10^{-7} M, равновесная концентрация растворенного $H_2S(aq)$ равна 1×10^{-6} M. Рассчитайте равновесную концентрацию MoS_4^{2-} .

$[MoS_4^{2-}] =$

Растворы, содержащие ${\rm MoO_2S_2}^{2^-}$, ${\rm MoOS_3}^{2^-}$ и ${\rm MoS_4}^{2^-}$ имеют полосы поглощения с максимумами в видимой области при 395 нм и 468 нм. Остальные ионы и сероводород в видимой области свет не поглощают. Молярные коэффициенты поглощения (ϵ) даны в таблице:

	ε при 468 нм,	ε при 395 нм,		
	л·моль ⁻¹ ·см ⁻¹	π ·моль ⁻¹ ·см ⁻¹		
MoS_4^{2-}	11870	120		
$MoOS_3^{2-}$	0	9030		
$MoO_2S_2^{2-}$	0	3230		

b. *Неравновесный* раствор из молибденсодержащих частиц содержит только ионы MoS_4^{2-} , $MoOS_3^{2-}$ и $MoO_2S_2^{2-}$. Общая концентрация MoS_4^{2-} в растворе равна 6.0×10^{-6} M. Оптическая плотность этого раствора в кювете с длиной оптического пути 10 см составляет 0.365 при 468 нм и 0.213 при 395 нм. Рассчитайте концентрации всех трех молибденсодержащих частиц в этом растворе.

 $MoO_2S_2^{2-}$: _____

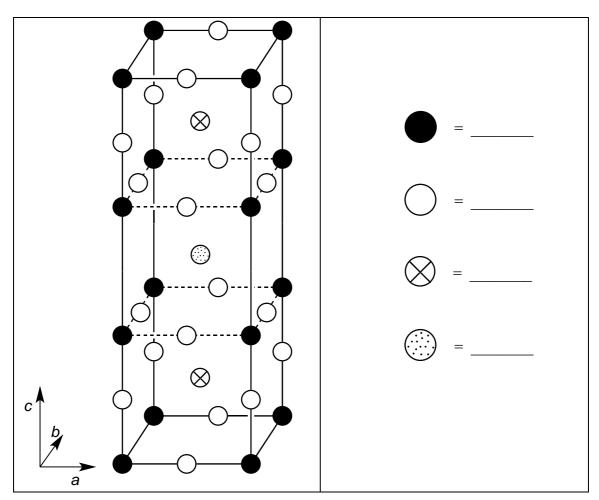
MoOS₃²⁻: _____

MoS₄²⁻: ______

Name:	Code:				
устанавливаются гидролитическ остается в растворе. Рассчита молибденсодержащих ионов (N Диссоциацией H_2S на ионы прен	алгебраических уравнений, необходимых для				

Name:	Code:

іі. Сделав разумные допущения, рассчитайте равновесные концентрации указанных выше частиц. Ответ запишите с двумя значащими цифрами.


H ₂ S	MoO ₄ ²⁻	MoO ₃ S ²⁻
MoO ₂ S ₂ ²⁻	MoOS ₃ ²⁻	MoS ₄ ²⁻

ЗАДАЧА 4 7.8 балла

a	b	c	d-i	d-ii	d-iii	d-iv	e-i	e-ii	Очки	Баллы
12	14	10	4	2	2	4	4	8	60	7.8

В 80-х годах прошлого века был открыт класс керамических материалов, которые проявляют сверхпроводящие свойства при необычно высоких температурах (90К и выше). Одним из таких материалов (обозначается как "YBCO") является соединение, в состав которого входят иттрий, барий, медь и кислород. Его идеализированная брутто-формула $YBa_2Cu_3O_7$, но реальный состав может изменяться в соответствии с формулой $YBa_2Cu_3O_{7-\delta}$, где $0 < \delta < 0.5$.

а. Ниже приведена одна элементарная ячейка YBCO. Расшифруйте обозначение элементов в ячейке. Напротив каждого кружочка запишите символ элемента, которому он соответствует.

Это соединение имеет орторомбическую сингонию кристаллической решетки $(a \neq b \neq c)$, однако с достаточно хорошим приближением можно считать, что оно имеет тетрагональную сингонию с параметрами элементарной ячейки $a \approx b \approx (c/3)$.

b. Образец YBCO с $\delta=0.25$ исследовали методом рентгеновской дифракции с использованием $\mathrm{Cu}_{K\alpha}$ излучения (длина волны $\lambda=154.2$ пм). Дифракционный пик с наименьшим значением угла отражения наблюдается при значении $2\theta=7.450^{\circ}$. На основании этих данных рассчитайте значения параметров a и c элементарной ячейки данного образца YBCO. Примите, что a=b=(c/3).

a =
c =

c. Рассчитайте плотность данного образца YBCO ($\delta = 0.25$) в г·см⁻³. Если вы не смогли рассчитать значения параметров ячейки a и c в пункте (b), используйте следующие значения: a = 500.0 пм. c = 1500.0 пм.

следующие значения: $a = 500.0$ пм, $c = 1500.0$ г	IM.	
	Плотность =	<u>гсм⁻³.</u>

d. При растворении YBCO в водном растворе HCl с концентрацией $1.0\,$ М выделяется O_2 . Этот раствор прокипятили в течение $10\,$ минут для удаления растворенных в нем газов, а затем охладили и добавили избыток раствора KI. Раствор приобрел желто-коричневую окраску. Этот раствор можно оттитровать раствором тиосульфата, используя крахмал в качестве индикатора. Если точно такой же образец YBCO растворять в атмосфере аргона в водном растворе, содержащем одновременно KI и HCl (оба в концентрации $1\,$ M), то окраска раствора также изменяется на желто-коричневую, однако выделения газа при этом не наблюдается.

i.	Запишите в ионном виде уравнение реакции (с коэффициентами) растворения							
	твердого выделени	_	и ₃ О _{7-δ} в	водном	растворе	НСІ, п	ри котором	происходит
	выделени	ic 0 ₂ .						
i	про	исходящ	ей при ,		избытка І		ми, уравнені глой среде на	

Name:	Co	ode:
ііі. Запишите в происходящей при тиосульфата $(S_2O_3^{2-})$.	ионном виде уравнение реакции титровании раствора, полученного	
	ионном виде уравнение реакции растворении твердого $YBa_2Cu_3O_{7-\delta}$ в κ KI, в атмосфере аргона.	

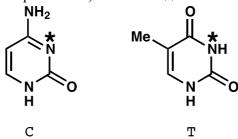
е. Взяли два абсолютно идентичных образца YBCO с неизвестным значением δ . Один образец растворили в 5 мл водного раствора HCl (1.0 M). При этом выделялся O_2 . Полученный раствор прокипятили для удаления растворенных газов, охладили и добавили к нему в атмосфере аргона 10 мл 0.7 М раствора KI. На титрование полученного раствора с крахмалом в качестве индикатора было израсходовано $1.542 \cdot 10^{-4}$ моля тиосульфата.

Второй образец YBCO растворили в атмосфере аргона в 7 мл раствора, в котором одновременно находились KI (1.0 M) и HCl (0.7 M), и оттитровали раствором тиосульфата. Для достижения конечной точки титрования потребовалось $1.696 \cdot 10^{-4}$ моля тиосульфата.

i.	Рассчитайте	количество	вещества	Cu	(в	молях)	В	каждом	ИЗ	исследуемых
Ωĺ	inaziior VRCC)								

n(Cu) =	_МОЛЬ.	

і. Рассчитайте значение δ в этих образцах YBCO.	
S =	


ЗАДАЧА 5

7.0 баллов

a-i	a-ii	b	С	d	e	f	Очки	Баллы
2	4	4	2	12	6	4	34	7.0

Дезоксирибонуклеиновая кислота (ДНК) — одна из важнейших молекул жизни. В этой задаче рассматриваются пути модификации структуры ДНК, как осуществляемые в природе, так и придуманные человеком.

а. Рассмотрим пиримидиновые основания цитозин (**C**) и тимин (**T**). При модификации одноцепочечной молекулы ДНК алкилируются атомы азота N-3 (помечены звездочками на рис. ниже) только в одном из этих оснований.

і. <u>Обведите кружком</u> обозначение того основания (C или T), атом азота N-3 которого является более нуклеофильным и подвергается алкилированию.

(i)		
	C	T

іі. <u>Приведите</u> две резонансные структуры молекулы, выбранной вами ответе на вопрос **і**, которые обосновывают ваш выбор. Укажите все отличные от нуля формальные заряды на атомах в этих структурах.

(ii)		

b. Один из основных путей модификации ДНК в природе — метилирование S-аденозил метионином (SAM) гуанина (G) по атому азота, помеченному знаком *. Изобразите структурные формулы обоих продуктов реакции между гуанином и SAM.

с. Одним из первых синтетических ДНК-алкилирующих агентов является иприт.

$$CI \xrightarrow{S} CI \xrightarrow{H_2N \xrightarrow{N} \stackrel{N}{N} \stackrel{N}{N}} CI \xrightarrow{S} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N}$$

Сначала иприт во внутримолекулярной реакции образует высокореакционный интермедиат **A**, который непосредственно алкилирует ДНК с образованием продукта, указанного на схеме выше. <u>Нарисуйте</u> структурную формулу реакционноспособного интермедиата **A**.

d. Азотистые аналоги иприта реагируют с ДНК аналогично (смотри схему в пункте **c**). Активность азотистых аналогов иприта можно изменять, варьируя третий заместитель при атоме азота. *Активность азотистых аналогов иприта возрастает с увеличением нуклеофильности «центрального» атома азота.* **Выберите** (запишите римские цифры) наиболее и наименее активный азотистый аналог иприта в каждой приведенной ниже серии соединений.

i.

$$CI \longrightarrow NO_2$$
 $CI \longrightarrow NO_2$
 $CI \longrightarrow NO_2$

Наиболее активный:

Наименее активный:

ii.

$$CI \longrightarrow N \longrightarrow CI$$
 $CI \longrightarrow N \longrightarrow CI$ $CI \longrightarrow N \longrightarrow CI$ III

Наиболее активный:

Наименее активный:

iii.

Наиболее активный:

Наименее активный:

е. Некоторые классы природных соединений также могут выступать как ДНК-алкилирующие агенты. Одним из таких классов являются дуокармицины (**duocarmycins**). Ниже приведен фрагмент асимметрического синтеза природного соединения (+)-**Duocarmycin SA**. <u>Нарисуйте</u> структурные формулы соединений **J** и **K**, которые можно выделить в индивидуальном виде.

$$H_{3}COOC \longrightarrow H_{3}OOC \longrightarrow H_{3}OOC$$

J	K

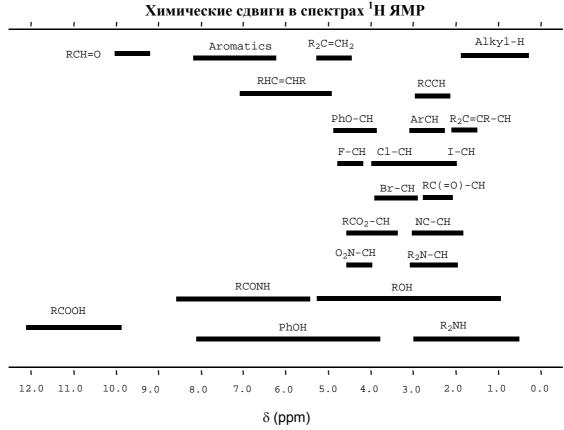
f. Для того чтобы изучить, каким образом действуют дуокармицины, синтезировали их аналоги. Одним из них является изображенный ниже тиоэфир. <u>Нарисуйте</u> структурную формулу реакционноспособного вещества **Z**.

$$CI \xrightarrow{N} OBn \xrightarrow{NaHCO_3} Z \xrightarrow{N} OH OH OH OH$$

$$C_{21}H_{19}CIN_2O_4S$$

$$C_{21}H_{19}CIN_2O_4S$$

ЗАДАЧА 6 6.6 балла


a	b	С	d	Очки	Баллы
2	4	6	8	20	6.6

Препарат «Varenicline» разработан как средство борьбы с никотинозависимостью. Его можно синтезировать по схеме, представленной ниже. Все соединения, обозначенные буквами (A-H), являются нейтральными веществами, и их можно выделить в индивидуальном виде.

Name:	Code:
а. Нарисуйте структурную формулу соединения А.	
A	

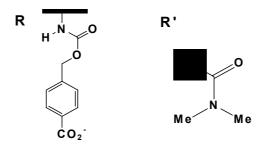
b. В спектре ¹Н-ЯМР соединения **B** присутствуют такие сигналы: δ 7.75 (синглет, 1H), 7.74 (дублет, 1H, J = 7.9 Γ ц), 7.50 (дублет, 1H, J = 7.1 Γ ц), 7.22 (мультиплет, 2 неэквивалентных H), 4.97 (триплет, 2H, J = 7.8 Γ ц), 4.85 (триплет, 2H, J = 7.8 Γ ц). Изобразите структурную формулу **B**, согласующуюся с этими данными.

Name:	Code:
-------	-------

с. Изобразите структурные формулы соединений С, **D** и **F**.

С	D
F	

d. Изобразите структурные формулы реагентов X и Y, используемых для превращения вещества G в *varenicline*, и формулу промежуточного продукта H, который можно выделить в индивидуальном виде.


X	Y
Н	

ЗАДАЧА 7 7.5 баллов

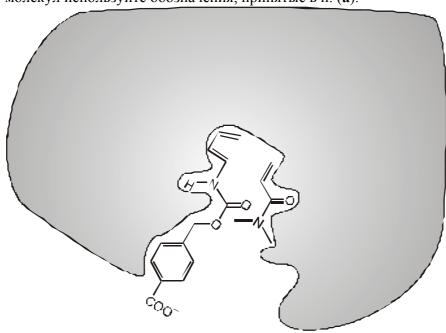
a	b	c	d	e	f	Очки	Баллы
9	15	8	6	8	6	52	7.5

Недавно был получен искусственный фермент, связывающий два субстрата (диен и диенофил), показанных ниже, и катализирующий реакцию Дильса-Альдера между ними.

- **а.** В случае неферментативной реакции Дильса-Альдера между данными веществами (субстратами) возможно образование 8 продуктов.
- і. Изобразите структурные формулы **любых** двух продуктов, являющихся **региоизомерами** по отношению друг к другу. Используйте клинья (—) и штрихи (——) для указания стереохимии обоих продуктов. Используйте \mathbf{R} и $\mathbf{R'}$ для обозначения приведенных ниже фрагментов, которые не изменяются в ходе реакции.

Name:	Code:
энантиомерами по отношению друг к ду () для указания стереохимии обоих	любых двух продуктов, являющихся ругу. Используйте клинья (—) и штрихи к продуктов. Используйте R и R' для меняются в ходе реакции (так же, как в
ііі. Изобразите структурные формулы	любых двух продуктов, являющихся
	другу. Используйте клинья (—) и штрихи
	к продуктов. Используйте \mathbf{R} и $\mathbf{R'}$ для
	меняются в ходе реакции (так же, как в
п. (i)).	Г

b. Скорость и региоселективность реакции Дильса-Альдера зависят от того, насколько два вступающих в реакцию вещества подходят друг другу с точки зрения распределения электронной плотности. Ниже приведены структуры диена и диенофила, рассмотренные в части (a).


і. Обведите кружком атом углерода диена, обладающий повышенной электронной плотностью. Рядом с диеном изобразите одну его резонансную структуру, подтверждающую ваш ответ. Укажите все отличные от нуля формальные заряды на атомах изображенной вами резонансной структуры.

іі. Обведите кружком атом углерода диенофила, обладающий пониженной электронной плотностью. Рядом с диенофилом изобразите одну его резонансную структуру, подтверждающую ваш ответ. Укажите все отличные от нуля формальные заряды на атомах изображенной вами резонансной структуры.

Name:	Code:
региохимию продукта нефермент диенофилом. Изобразите стру	целанных вами в пунктах (i) и (ii), предскажите гативной реакции Дильса-Альдера между диеном и ктурную формулу этого продукта без учета и R' для обозначения фрагментов, которые не п. (a)).

с. На рисунке ниже представлены диен и диенофил, связанные с активным центром фермента до начала реакции. Серая область показывает сечение фермента. Связанный диенофил располагается **по**д плоскостью сечения, а связанный диен — **на**д плоскостью сечения фермента.

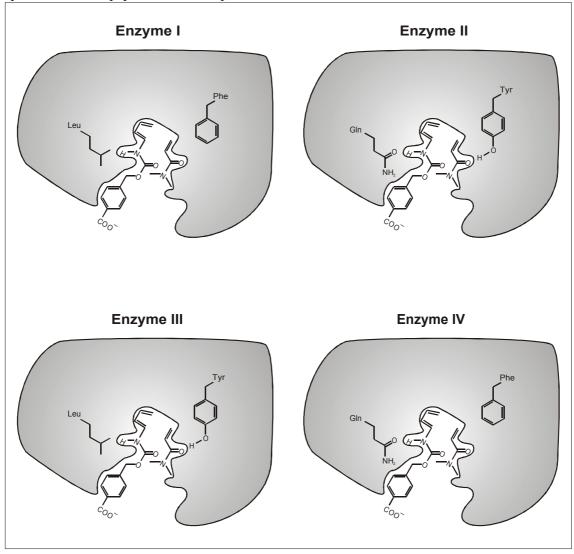
Изобразите структурную формулу продукта катализируемой ферментом реакции Дильса-Альдера. Для указания стереохимии продукта и неизменяемых фрагментов молекул используйте обозначения, принятые в п. (а).

d. Проанализируйте каждое из приведенных ниже утверждений о ферментах. Для каждого из утверждений укажите, является оно истинным или ложным (обведите кружком "Истина" или "Ложь").

і. Фермент более прочно связан с интермедиатом в переходном состоянии (фермент-субстратный комплекс), чем с исходными реагентами и продуктом реакции.

Истина Ложь

іі. Ферменты сдвигают положение равновесия в сторону продуктов.

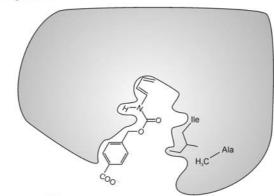

Истина Ложь

ііі. При ферментативном катализе энтропия активации реакции всегда выше по сравнению с аналогичной неферментативной реакцией.

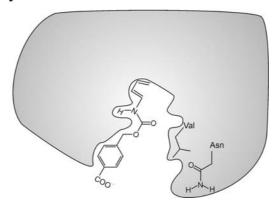
Истина Ложь

е. В лаборатории была получена серия искусственных ферментов, различающихся каталитической активностью (ферменты (Enzyme) I, II, III и IV, см. ниже). На рисунках указаны аминокислоты, варьирующиеся в разных ферментах. Считайте, что изображенные на рисунке функциональные группы аминокислот располагаются в непосредственной близости от соответствующих фрагментов диена и диенофила при образовании переходного состояния.

Из приведенных ниже ферментов выберете тот (запишите номер), каталитическое действие которого приведет к наибольшему ускорению по сравнению с неферментативной реакцией.



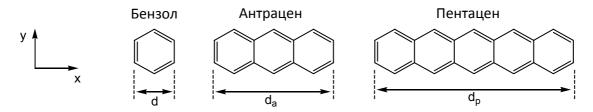
Номер фермента:


f. Субстратная специфичность искусственных ферментов V и VI (см. ниже) была изучена с использованием диенофилов I - 6, приведенных ниже.

Диенофил 1 реагировал наиболее быстро в случае фермента V. В то же время, наибольшая скорость реакции в случае фермента VI наблюдалась для другого диенофила. Из шести приведенных выше диенофилов выберете тот (запишите номер), реакция Дильса-Альдера с которым будет протекать наиболее быстро в случае катализа ферментом VI.

Enzyme V

Enzyme VI



Номер диенофила:

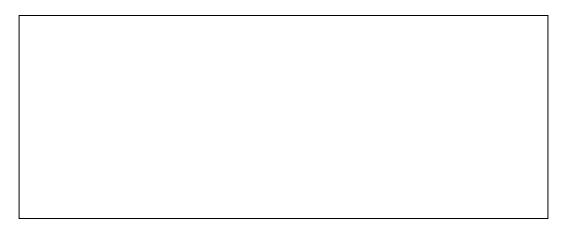
Задача 8 8.3 балла

a	b-i	b-ii	b-iii	b-iv	b-v	c-i	c-ii	c-iii	Очки	Баллы
2	3	4	6	4	2	5	8	2	36	8.3

В задаче рассматриваются полициклические ароматические углеводороды (ПАУ). В линейных ПАУ центры бензольных колец находятся на одной прямой, а размер молекулы по одной из осей совпадает с размером бензольного кольца. Примерами таких углеводородов служат бензол, антрацен и пентацен. Их физические и химические свойства зависят от степени делокализации π -электронного облака в молекуле.

а. Ширина бензольного кольца составляет d=240 пм. Рассчитайте ширину антрацена и пентацена, $d_{\rm a}$ и $d_{\rm p}$, соответственно.

Антрацен, $d_{\rm a}$ = Π ентацен, $d_{\rm p}$ =


b. Предположим, что π -электроны в бензоле описываются моделью «частица в двумерном ящике». В этой модели сопряженные π -электроны в ПАУ рассматриваются как свободные частицы в бесконечно высокой прямоугольной яме (основание ямы лежит в плоскости x-y).

Для электронов в двумерном ящике с координатами x и y уровни энергии описываются формулой:

$$E_{n_x,n_y} = \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\right) \frac{h^2}{8m_e}$$

где n_x и n_y — квантовые числа (натуральные числа, которые независимо друг от друга могут принимать все значения от 1 до ∞), h — постоянная Планка, $m_{\rm e}$ — масса электрона, L_x и L_y — размеры ящика. Эту модель можно использовать для описания π -электронов в ПАУ.

i. Предположим, что бензольное кольцо имеет размер d в каждом из двух измерений, x и y. Выведите и запишите общую формулу для уровней энергии с квантовыми числами n_x и n_y в линейном ПАУ, содержащем w сочлененных бензольных колец размера d.

іі. Приведенная ниже диаграмма качественно правильно показывает распределение энергетических уровней π -электронов для пентацена. Приведены все заполненные уровни энергии и низший свободный. В скобках указаны значения квантовых чисел $(n_x; n_y)$.

Пентацен:

 $\begin{array}{c} (3;2) \\ \uparrow \downarrow (9;1) \\ \uparrow \downarrow (2;2) \\ \uparrow \downarrow (1;2) \\ \uparrow \downarrow (7;1) \\ \uparrow \downarrow (6;1) \\ \uparrow \downarrow (5;1) \\ \uparrow \downarrow (4;1) \\ \uparrow \downarrow (3;1) \\ \uparrow \downarrow (2;1) \\ \uparrow \downarrow (1;1) \end{array}$

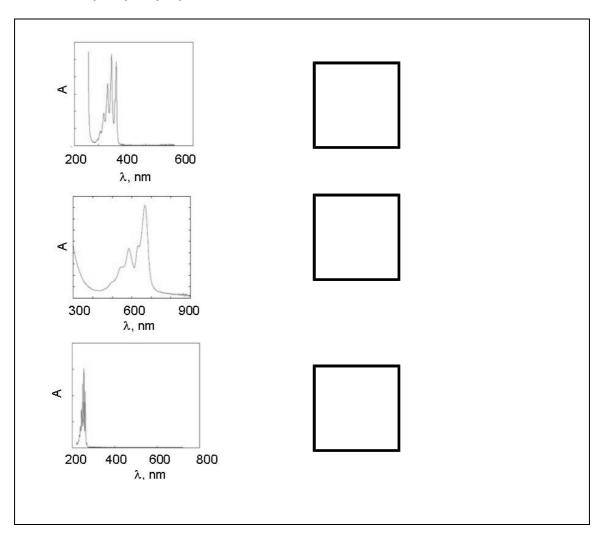
Ниже приведена схема энергетических уровней π -электронов для антрацена. Обратите внимание, что некоторые уровни имеют одно и то же значение энергии. Заполните эту диаграмму с помощью стрелок «вверх» и «вниз», обозначающих электроны. В скобках укажите соответствующие значения квантовых чисел n_x , n_y для всех занятых уровней энергии и низшего свободного уровня.

Антрацен:	
(;_)	
(;_)(_;_)	
(;)	
(;)	
(;_)	
(;_)	
(;_)	
(;_)	
(;_)	

ііі. Используйте модель двумерного ящика для молекулы бензола. Составьте диаграмму энергетических уровней (всех занятых и низшего свободного), обозначьте уровни квантовыми числами n_x , n_y и заполните диаграмму электронами. Имейте в виду, что эта модель не дает точного описания всех уровней энергии бензола.

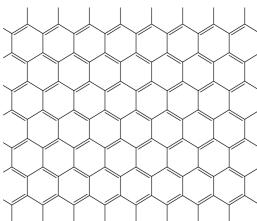
iv. Реакционная способность многих ПАУ обратно пропорциональна разности энергий ΔE между высшим занятым и низшим свободным уровнями энергии π -электронов. Рассчитайте значения ΔE (в Джоулях) для бензола, антрацена и пентацена. Для этого используйте ответы на вопросы ii) и iii) для антрацена и бензола, соответственно. Если вы не смогли ответить на них, примите значение $(2,2)$ для высшего занятого уровня и значение $(3,2)$ для низшего вакантного уровня этих двух молекул (эти значения не обязательно совпадают с истинными).
Бензол
ΔE для бензола:
Антрацен
Типридел
ΔE для антрацена:
Пентацен

Name:


Code:

 ΔE для пентацена:

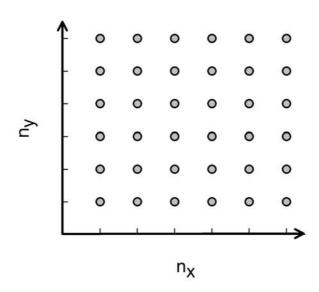
Расставьте бензол (B), антрацен (A) и пентацен (P) в порядке увеличения реакционной способности.


Цан	именее активный	> Co	MIN OKTUDIJI IŠ

 ${f v}$. На рисунке приведены электронные спектры поглощения (оптическая плотность как функция длины волны) для бензола $({f B})$, антрацена $({f A})$ и пентацена $({f P})$. Основываясь на качественном понимании модели «частица в ящике», укажите какой спектр к какой молекуле относится. В каждый квадратик впишите соответствующую букву.

 ${f c.}$ Графен — это двумерная решетка, состоящая из атомов углерода, соединенных в шестиугольники. Его можно рассматривать как предельный случай ПАУ с очень большими размерами в обоих измерениях.

Рассмотрим лист графена с размерами $L_x = 25$ нм и $L_y = 25$ нм. Фрагмент листа приведен ниже.



і. Площадь одного углеродного шестиугольника примерно равна $52400~\text{пм}^2$. Рассчитайте общее число π -электронов в листе графена ($25~\text{нм} \times 25~\text{нм}$). Числом электронов на краях листа можно пренебречь.

ii. π -электроны в графене можно описать, используя модель «частица в двумерном ящике».

В системах с большим числом электронов трудно указать единственный высший заполненный уровень, так как довольно много уровней имеют очень близкую энергию. Все заполненные уровни с наивысшей энергией образуют так называемый уровень Ферми. В графене уровень Ферми состоит из большого набора различных комбинаций квантовых чисел (n_x ; n_y).

Определите энергию уровня Ферми листа графена размером 25 нм × 25 нм. Учтите, что низший заполненный уровень имеет практически нулевую энергию по сравнению с уровнем Ферми. Для ответа на вопрос полезно рассмотреть наборы квантовых чисел (n_x, n_y) как точки на двумерной решетке (см. ниже) и определить область, в которую попадают точки, соответствующие занятым уровням. Число электронов в листе графене возьмите из ответа на вопрос (i) или, если вы не смогли его определить, используйте значение 1000 (которое отнюдь не обязано быть верным).

Name:		Code:	
Энергия уровня Ферми	=		
эпергия уровия терми			
ііі. Электропроводность графеноподобных материалов обратно пропорциональна разности энергий ΔE между высшим занятым и низшим свободным уровнями энергии π -электронов. Укажите, больше, меньше или равна электропроводность квадратного листа графена размером 25 нм \times 25 нм по сравнению с электропроводностью листа графена 1 м \times 1 м при одинаковой температуре. Обведите правильный ответ.			
меньше	равна	больше	