Христенко Инна Васильевна

Характеристики реагентов в приповерхностном слое комплексообразующих кремнеземов по данным зондирования поверхности

Научный руководитель: д.х.н., проф. Холин Ю.В.

Цель и задачи исследования: на основе зондирования поверхности ионами водорода, гидроксил ионами, ионами металлов и органическими красителями охарактеризовать важнейшие факторы, влияющие на свойства приповерхностного слоя кремнеземов, химически модифицированных слабыми органическими основаниями и кислотами, и реакционную способность привитых реагентов; установить взаимное влияние факторов.

Научные задания работы:

▶методом количественного физико-химического анализа (КФХА) установить стехиометрический состав и получить количественные данные о константах устойчивости продуктов реакций компонентов растворов (зондов) с закрепленными лигандами различных классов в зависимости от температуры, природы и концентрации фоновых электролитов; количественно охарактеризовать энергетическую неоднородность поверхности материалов;

▶изучить эффективность моделей, используемых для обработки данных КФХА, для получения информации о свойствах привитых реагентов и сформировать ограниченный набор рекомендованных моделей;

▶ на основе объединения результатов зондирования химически модифицированных поверхностей с данных КФХА оценить полярность, кислотность и топографию поверхности химически модифицированных кремнеземов в зависимости от природы и концентрации привитых реагентов.

Объекты исследования

No	Матрица	Удельная поверхность, м ² /г	Размер пор, нм	Привитая группа	Концентрация привитых групп, c_L , ммоль/г
1	Силикагель	300	5-10	<u> </u>	_
2	Силикагель	300	5-10	н-пропиламин $\sim (\mathrm{CH_2})_3\mathrm{NH_2}$	0.68
3	Силохром	120	30-50	н-пропиламин \sim (CH $_2$) $_3$ NH $_2$	0.26
4	Аэросил	200	непористый	н-пропиламин \sim (CH $_2$) $_3$ NH $_2$	0.56
5	Аэросил	200	непористый	н-пропиламин $\sim (\mathrm{CH_2})_3\mathrm{NH_2}$	0.20
6	Силохром	120	200	диэтиламин ~(CH ₂) ₂ NH	0.46
7	Аэросил	200	непористый	диэтилентриамин \sim NH(CH ₂) ₂ NH(CH ₂) ₂ NH ₂	0.37
8	Аэросил	200	непористый	этилендиамин \sim NH(CH $_2$) $_2$ NH $_2$	0.59
9	Силохром	120	200	N-бензоил-N-	0.076
9a	Аэросил	175	непористый	фенилгидроксиламин	0.21
10	Силикагель	300	5-10	монокалиевая соль аминодифосфоновой кислоты	0.56

Органические индикаторы, использованные в качестве зондов

Индикатор	рК _а (в водном растворе)	Формула
Метиловый оранжевый, МО	3.46	NaO_3S $N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N$
2,6-дифенил-4-(2,4,6- трифенил-пиридиний-1) фенолят, (I)	8.64	+
2,6-дихлор-4-(2,4,6- трифенил-N- пиридиний)фенолят, (II)	4.76	R = Ph(I), Cl(II).

Раствор индикатора I в бутаноле, пропаноле, этаноле, метаноле, ацетофеноне, ацето-нитриле и ацетоне (слева направо)

Предмет исследования: причины, определяющие особенности протекания реакций в приповерхностном слое химически модифицированных кремнеземов.

Методы исследования: количественный физико-химический анализ (КФХА) и зондирование поверхности (с применением техники спектроскопии диффузного отражения).

Зондирование поверхности силикагеля органическими индикаторами

Спектры поглощения МО на силикагеле при сорбции МО из растворов с различной кислотностью (рH=4.38; 4.02; 3.44; 3.18; 2.99; 2.43)

Изотерма сорбции MO на силикагеле 1 из раствора с рH 2.8.

Спектры поглощения индикатора І на поверхности силикагеля

$$(a: c_s(I) = 6.35 \cdot 10^{-6} \text{ моль·м}^{-2},$$

 $b: c_s(I) = 6.35 \cdot 10^{-5} \text{ моль·м}^{-2})$

$$b: c_s(I) = 6.35 \cdot 10^{-5} \text{ моль·м}^{-2}$$

Спектр поглощения индикатора II на поверхности силикагеля $(c_s(II) = 7.16 \cdot 10^{-8} \text{ моль·м}^{-2},$

а – влажный образец,

b – образец после термообработки при 120°C).

Нормализованный параметр полярности Райхардта

$$E_{T}^{N} = \frac{E_{T}(pacmeopumenb) - E_{T}(TMC)}{E_{T}(H_{2}O) - E_{T}(TMC)} = \frac{E_{T}(pacmeopumenb) - 30.7}{32.4}$$

 E_{T} (растворитель) = 28591/ λ_{max} (нм)

$$*E_{T}(I) = 191.26 - 0.947 \cdot E_{T}(II) + 0.004 \cdot E_{T}(II)^{2}$$

$$E_{T}(II) = 28563/\lambda_{\text{make}}^{II}$$

*Kessler M.A., Wolfbeis O.S. ET(33), a solvatochromic polarity and micellar probe for neutral aqueos solution // Chemistry and Physics of Lipids. 1989. V. 50. P. 51.

Т		тN	
	Материал	E_{T}^{N}	Литература
	SiO ₂ (KG 100)*	0.97	Tavener S.J., Clark J.H., Gray G.W., Heath P.A., Macquarrie D.J. // Chem. Commun. 1997. P. 1147-1148
ŀ			
	SiO ₂ (KG 60)*	0.88	Duncan J.M., Tavener S.J., Gray G.W., Heath P.A., Rafelt J.S., Saulzet S.I., Hardy Jeff J.E., Clark J.H., Sutra P., Brunel D., Di Renzo F., Fajula F. // New J.Chem. 1999. V. 23. P. 725.
	SiO ₂ (Aerosil 200)**	0.84	Spange S., Vilsmeier E., Zimmermann Y. // J. Phys. Chem. B. 2000. V. 104. P. 6417.
	SiO ₂ (Aerosil 300)**	0.85	G116111. B. 2000. V. 101.11.0117.
	SiO ₂ (Aerosil 380)**	0.86	
	SiO ₂ (Aerosil 300)**	0.90	Spange S., Reuter A., Lubda D. // Langmuir. 1999. V. 15. P. 2103-2111.
	SiO ₂ (Aerosil 300)**	0.84	10.1.2100-2111.
	(400 °C)		
	SiO ₂ (SilicageIL 5/40)	0.86	

^{* -} растворитель дихлорметан

^{** -} растворитель дихлорэтан

Зондирование поверхности аминокремнеземов

Материалы: 2 (силикагель с привитым н-пропиламином), 3 (силохром с привитым н-пропиламином) и 6 (силохром, модифицированный диэтиламином)

Модель химических реакций

Протонирование привитых групп с учетом прочной фиксации анионов солевого фона (А-)

$$\overline{Q} + H^+ + A^- = \overline{QHA}$$

Гомосопряжение:

$$\overline{QHA} + \overline{Q} = \overline{Q_2HA}$$

Логарифмы констант равновесия реакций на поверхности материала 2 (298 К)

Фоновый электролит NaNO ₃								
<i>I</i> , моль/л	0.15	0.50	0.83	1.00				
lg σ _H	6.94 (0.02)*	6.52 (0.06)	6.50 (0.05)	6.32 (0.03)				
$\operatorname{Ig}K_\Gamma$	3.73 (0.03)	3.88 (0.08)	3.49 (0.09)	3.71 (0.05)				
	(ит KCI					
<i>I</i> , моль/л	0.10	0.33	0.67	1.00				
lg σ _H	6.79 (0.07)	6.64 (0.02)	6.59 (0.01)	6.81 (0.01)				
$\operatorname{Ig}K_\Gamma$	3.89 (0.04)	3.86 (0.03)	3.53 (0.03)	3.56 (0.03)				
Фоновый электролит Na_2SO_4								
<i>I</i> , моль/л	0.10	0.50	0.67	1.00				
lg σ _H	7.40 (0.03)	6.75 (0.03)	6.64 (0.03)	6.57 (0.03)				
$\operatorname{Ig}K_\Gamma$	3.43 (0.06)	3.46 (0.05)	3.54 (0.05)	3.54 (0.05)				

Логарифмы констант равновесия реакций на поверхности материала 3 (298 К)

	Фоновый электролит NaNO ₃										
I, моль/л	0.05	0.10	0.25	0.30	0.50	0.75	0.80	1.00			
lg σ _H	7.26 (0.05)	7.10 (0.06)	6.79 (0.04)	6.77 (0.04)	6.43 (0.03)	6.31 (0.03)	6.27 (0.04)	6.39 (0.03)			
$lg K_{\Gamma}$	3.86 (0.09)	3.93 (0.09)	3.86 (0.08)	3.94 (0.07)	3.77 (0.06)	3.79 (0.05)	3.78 (0.07)	3.59 (0.07)			
			Фоновь	ій электрол	ит MgSO ₄						
I, моль/л	I	0.15		0.47		3	1.00				
$lg \sigma_H$	7	7.36 (0.03)		6.92 (0.04)		.03)	6.32 (0.03)				
$lg K_{\Gamma}$	3	.73 (0.05)	3.58	3 (0.06)	3.61(0.05)		3.69 (0.06)				

Логарифмы констант равновесия реакций на поверхности материала 6 (298 К)

	Фоновый электролит NaNO ₃									
	<i>I</i> , моль/л 0.10		0.17	0.17 0.50 0.67		0.83	1.00			
+	$\lg \sigma_{_H}$	8.34 (0.04)	8.17 (0.05)	7.26 (0.04)	6.77 (0.06)	6.62 (0.08)	6.70 (0.08)			
	$\lg K_{\Gamma}$	4.01 (0.07)	2.8 (0.2)	3.69 (0.07)	4.13 (0.08)	4.12 (0.12)	3.86 (0.12)			
			Фоновы	й электролит	Na ₂ SO ₄					
	I, моль/л	0.17	0.33	0.50	0.67	0.83	1.00			
	$\lg \sigma_{_H}$	8.17 (0.03)	7.71(0.04)	7.09 (0.04)	7.13 (0.04)	7.02 (0.04)	6.87 (0.04)			
	$\lg K_{\Gamma}$	2.84 (0.11)	3.33 (0.10)	3.77 (0.06)	3.51 (0.07)	3.37 (0.08)	$3.05 (0.12)^{13}$			

Модель бидентатных центров: при протонировании аминокремнеземов происходит последовательное (ступенчатое) присоединение ионов H⁺ к бидентатным центрам:

Логарифмы констант равновесия на поверхности материала 6

I, моль·л ⁻¹	0.10	0.17	0.50	0.67	0.83	1.00
lg K _{H1}	8.82	8.05	7.92	8.08	8.00	7.72
	(0.04)	(0.06)	(0.08)	(0.08)	(0.11)	(0.12)
lg K _{H2}	5.88	6.77	5.28	5.05	5.25	5.67
	(0.06)	(0.07)	(0.08)	(0.10)	(0.12)	(0.14)

Термодинамические характеристики равновесия сорбции ионов водорода на поверхности аминокремнеземов

Зависимость логарифма термодинамической константы протонирования от величины, обратной температуре для материалов 2 и 6

$$\log \sigma_{H}^{T} = \frac{\Delta_{r} S^{0}}{2.3R} - \frac{\Delta_{r} H^{0}}{2.3RT}$$

Материал 2: $\Delta_r H^0 \approx 13 \text{ кДж·моль}^{-1}$; $\Delta_r S^0 \approx 187 \text{ кДж·моль}^{-1} \cdot \text{K}^{-1}$, r = 0.9998. Материал 6: $\Delta_r H^0 \approx 24 \text{ кДж·моль}^{-1}$; $\Delta_r S^0 \approx 235 \text{ кДж·моль}^{-1} \cdot \text{K}^{-1}$, r = 0.9999.

$$\Delta H_{298}^{0} (NH_{3} + H^{+} = NH_{4}^{+}) = -54.1 \text{ kДж} \cdot \text{моль}^{-1},$$

 $\Delta S_{298}^{0} (NH_{3} + H^{+} = NH_{4}^{+}) \approx 0;$

$$\Delta$$
 H_{298}^{0} (H-C₃H₇NH₂ + H⁺ = H-C₃H₇NH₃⁺) = -57.4 kДж· моль⁻¹, Δ S_{298}^{0} (H-C₃H₇NH₂ + H⁺ = H-C₃H₇NH₃⁺) = 17 Дж· моль⁻¹·К⁻¹.

Marques H.// J. Chem. Soc. (Dalton), 1991

Кинетика сорбции ионов водорода на поверхности аминокремнеземов

Зависимость изменения концентрации ионов H^+ от времени (матеріал 6, фоновий електролит NaCl, I = 0.1 моль·л⁻¹, 323 K, степень протонирования f = 0.76).

$$C(t)/C(0) \approx a_0 - 2b\sqrt{t}$$

$$b = g\left(\frac{p(1+K)D}{\pi}\right)^{1/2}$$

Зондирование аминокремнеземов ионами металлов

$$\operatorname{Cu}^{2+} + \overline{\operatorname{Q}} + 2NO_3^- \stackrel{\sigma_1}{=} \overline{\operatorname{CuQ}(NO_3)_2}$$

$$\operatorname{Cu}^{2+} + 2\overline{\operatorname{Q}} + 2NO_3^{-} \stackrel{\sigma_2}{=} \overline{\operatorname{Cu}Q_2(NO_3)_2}$$

Логарифмы констант устойчивости аминокомплексов Cu(II) на поверхности материала 2

I, моль·л ⁻¹	293 К	303 K		313 K	
MOJID JI	$\lg \sigma_2$	$\lg \sigma_1$	$\lg \sigma_2$	$\lg \sigma_1$	$\lg \sigma_2$
0.10	11.22	~6	11.12	5.71	10.98
0.50	9.17	~5	9.18	4.50	8.80
0.75		~4	8.70	4.27	8.39
1.00		~4	8.45	4.25	8.25
I→0			12.72	6.93	12.76

Логарифмы констант устойчивости аминокомплексов Cu(II) на поверхности материала 6

I,	293 K 303		3 K 313		К .		3 K	
моль/л	$\lg \sigma_2$	$\lg \sigma_1$	$lg \sigma_2$	$lg \sigma_1$	$lg \sigma_2$	$lg \sigma_1$	$\log \sigma_2$	
0.10	10.28	-	10.98	7.04	12.28	-	12.16	
0.50	10.31	5.6	11.12	-	13.62	-	9.05	
0.75	10.17	-	12.79	6.40	-	6.46	-	
1.00	13.11	-	13.57	7.17	-	-	12.63	
I→0	~12		~12					

Логарифмы констант устойчивости аминокомплексов ионов металлов на поверхности материалов 2 и 8 (T=293 K, I=0.1 моль/л).

Металл	Материал 2	Материал 8	
	$\lg \sigma_2$	$lg \sigma_1$	
Co ²⁺	6.49 (0.15)	4.21 (0.14)	
Ni ²⁺	6.44 (0.15)	4.35 (0.04)	
Zn ²⁺	8.44 (0.11)		

Спектр поглощения индикатора I на поверхности материала 3 (поверхностная концентрация 0.03 (а) и 0.29 (b) мкмоль·м⁻²

Функция распределения привитых групп по логарифмам констант равновесия для материала 3

Спектр поглощения индикатора I на поверхности материала 4 (поверхностные концентрации 0.04 (1), 0.09 (2), 0.18 (3), 0.23 (4) мкмоль·м⁻²

Спектр поглощения индикатора II на поверхности материала 3 (c(II)=0.16 мкмоль·м $^{-2}$) и 4 (c(II)=0.15 мкмоль·м $^{-2}$).

Спектр поглощения индикатора I на поверхности материала 7 (c(I)=0.11 мкмоль·м $^{-2}$ и 8 (c(I)=0.10 мкмоль·м $^{-2}$)

Функция распределения привитых групп по логарифмам констант равновесия для материала 7

Функция распределения привитых групп по логарифмам констант равновесия для $_{20}$ материала 8

Зондирование кремнеземов, модифицированных группами N-бензоил-N-фенилгидроксиламина (БФГА), материалы 9 и 9^a

Зондирование ионами ОН-:

Диссоциация групп бензоилфенилгидроксиламина с учетом прочной фиксации противоиона К+фонового электролита

$$\overline{HQ} + K^+ = H^+ + \overline{KQ}$$

Реакция гомосопряжения:

$$\overline{HQ} + \overline{KQ} = \overline{KHQ_2}$$

Результаты оценки энергетической неоднородности групп БФГА на поверхности материала 9 (при ионных силах раствора: 1-0.1, 2-0.5, 3-0.75 и 1-1 моль/л и 298 К)

Результаты оценки энергетической неоднородности групп БФГА на поверхности материала 9^a (при ионных силах раствора : 1-0.1, 2-0.5, 3-0.75 и 1-1 моль/л и 298 K)

Зондирование поверхности материала 9 ионами металлов

Металл	I, моль/л	Реакция	lg β ₁
Cu ²⁺	0.1		4.47
	0.5	$Cu^{2+} + \overline{Q^-} + A^- = \overline{CuQA}$	3.94
	1.0		4.97
	2.5		7.08
Ni ²⁺	1	$Ni^{2+} + \overline{Q^-} + A^- = \overline{NiQA}$	3.19
Cd ²⁺	0.1	$Cd^{2+} + \overline{Q^{-}} + A^{-} = \overline{CdQA}$	2.32
Co ²⁺	1	$Co^{2+} + \overline{Q^{-}} + A^{-} = \overline{CoQA}$	3.33
Pb ²⁺	0.1	$Pb^{2+} + \overline{Q^{-}} + A^{-} = \overline{PbQA}$	3.76
Zn ²⁺	0.1	$Zn^{2+} + \overline{Q^{-}} + A^{-} = \overline{ZnQA}$	5.52
Fe ³⁺	0.1	$Fe^{3+} + \overline{HQ} + 2A^{-} = \overline{FeQA_{2}} + H^{+}$	8.04

Спектр поглощения комплекса Fe(III) с БФГА на поверхности материала 9 $(c_s(Fe) = 0.98 \text{ мкмоль} \cdot \Gamma^{-1})$

Результаты зондирования силикагеля, модифицированного аминодифосфонофой кислотой, сольватохромными бетаиновыми индикаторами

Спектры поглощения сольватохромных индикаторов I (*a*) u и II (*b*) на материале 10 при поверхностной концентрации зондов $6.26 \cdot 10^{-8}$ моль·м⁻².

Выводы

- Из анализа литературных данных следует, что для прогнозирования свойств гибридных материалов на основе аморфных кремнеземов, оптимизации условий их использования необходима развернутая информация о топографии, полярности и однородности поверхности материалов. Получение такой информации с помощью физико-химических методов исследования и количественного физико-химического анализа требует усовершенствование методологии исследования поверхности материалов и разработке комплексного подхода для оценивания топографии и однородности поверхности.
- Зондирование поверхности немодифицированного силикагеля бетаиновыми сольватохромными индикаторами Райхардта при нанесении зондов из этанольного раствора приводит к оценкам полярности =0.86, что близко к значениям 0.84-0.9, полученных при использовании ранее известных методик нанесения зондов из апротонных растворителей, что подтверждает правомерность методики, предложенной в данной работе.

•По результатам зондирования поверхности аминокремнеземов ионами водорода найдено, что их связывание с привитыми аминогруппами сопровождается гомосопряжением аминогрупп (кооперативный эффект), протекает на энергетически неоднородных центрах, с прочной фиксацией противоионов на заряженных центрах. Повышение температуры способствует гидратации приповерхностного слоя, что нивелирует проявление энергетической неоднородности и влияние кооперативных эффектов.

Тип кремнеземного носителя (пористый, мезапористый, непористый), природа и концентрация фонового электролита не изменяют структуру модели, что описывает равновесие на поверхности аминокремнеземов и лишь незначительно влияет на оценки констант равновесия.

Зондирование поверхности аминокремнеземов сольватохромными бетаиновыми индикаторами Райхардта выявило наличие граничной концентрации стандартного бетаинового индикатора, при повышении которой наблюдается окрашивание индикатора. Это свидетельствует о наличие на поверхности областей с высокой и пониженной кислотностью. Большая ширина полосы поглощения зондов на поверхности аминокремнеземов, наличие в спектрах двух полос поглощения в видимой области и широкий интервал варьирования значения параметра полярности среды, свидетельствует о многообразии типов микроокружения зондов в приповерхностном слое, а также о неравномерном распределении привитых реагентов на поверхности и приближает свойства среды в приповерхностном слое к свойствам органических растворителей и водно-органических смесей.

Такие свойства приповерхностного слоя способствуют проявлению энергетической неоднородности реагентов и кооперативных эффектов. Таким образом, ключевым фактором, который определяет протекание реакций на поверхности аминокремнеземов, выступает взаимодействие аминов с остаточными поверхностными силанольными группами и параметры среды в приповерхностном слое.

- По данным КФХА установлено, что протонизация привитых аминов и образование ими металлокомплексов слабо эндотермические процессы и сопровождаются увеличением энтропии. Отличие термодинамических характеристик процессов на поверхности от реакций в растворе можно объяснить с учетом особенностей реакционной среды в приповерхностном слое: протонизация аминов сопровождается фиксацией противоинов, которые при переходе из раствора на поверхность частично теряют гидратную оболочку.
- Связывание ионов водорода аминокремнеземами описывает модель диффузии из полубесконечного раствора. Выявлен двухстадийный характер процесса, когда на быстрой первой стадии связываются большая часть введенных в раствор ионов водорода, тогда, как вторая медленная стадия может длиться несколько часов. Соотношение "быстрых" и "медленных" центров сорбции значительно зависит от температуры и степени протонизации аминогрупп.

- Зондирование поверхности кремнеземов, модифицированных группами Nбензоил-N-фенилгидроксиламином (БФГА), ионами ОН- свидетельствует про неоднородность привитых реагентов высокую энергетическую значительное влияние химической неоднородности поверхности (наличие остаточных аминогрупп) на свойства привитых групп БФГА. Среда в приповерхностном слое материала, полученного методом поверхностной сборки, характеризуется большей неоднородностью по сравнению с исходными аминокремнеземами, что выражается в достаточно широком интервале варьирования рКа закрепленного БФГА. При образовании комплексов этого реагента с ионами Cu(II), Cd(II), Ni(II), Zn(II), Pb(II) и Fe(III) наблюдается вырождение стехиометрии взаимодействия металллиганд и образование единственного комплекса эквимолярного состава (в отличие от комплексов, образующихся в растворе состава 1:1, 1:2, 1:3). Образование устойчивого интенсивно окрашенного поверхностного комплекса Fe(III) с БФГА позволило использовать данный материал для селективного определения Fe(III) в растворах с помощью твердофазной спектрофотометрии.
- Зондирование сольватохромными индикаторами поверхности силикагеля с привитыми группами аминодифосфоновой кислоты свидетельствует о наличие на поверхности областей, что значительно отличаются полярностью и кислотностью, т.е. подтверждает увеличении неоднородности поверхности при её модификации методом поверхностной сборки.

- Для количественного описания равновесий на поверхности модифицированных кремнеземов достаточно использовать феноменологические модели ДВУХ типов: учитывающие множество химических форм на поверхности и кооперативные эффекты химических реакций или модель полидентатных центров) и модель непрерывного распределения констант равновесия, которая количественно оценивает энергетическую неоднородность привитых реагентов.
- Показано, что выводы, полученные по данным КФХА и при зондировании поверхности сольватохромными бетаиновыми индикаторами Райхарта, подтверждают и дополняют друг друга, что позволяет рекомендовать подход, базирующийся на одновременном использовании этих независимых методов, как общий для характеристики поверхностей гибридных материалов.

Публикации

- 1. Холин Ю.В., Христенко И.В. Кремнезем, химически модифицированный бензоилфенилгидроксиламином, в сорбции и твердофазном спектрофотометрическом определении Fe(III) // **Журн. прикл. химии** 1997. Т.70, No 6. С. 939-942.
- 2. Холин Ю.В., Коняев Д.С., Христенко И.В. Протолитические свойства бензоилфенилгидраксиламина, привитого на поверхность кремнезема // Журн. физ. химии 1997. Т.71, No 3. С. 517-520.
- Zaitsev V.N., Kholin Yu.V., Gorlova E.Yu., Khristenko I.V. Silica chemically modified with N-benzoyl-N-phenylhydroxylamine in chemisorption of hydrogen and metal ions // **Anal. Chim. Acta**. 1999. V.379, No 1-2. P. 11-22.
- 4. Kholin Yu.V., Myerniy S.A., Shabaeva Yu.V., Samoteikin A.A., Sumskaya N.R., Khristenko I.V. Chemisorption of hydrogen ions on aminosilica surfaces at different temperatures // **Adsorption Sci. and Technology** 2003. V.21, No 1. P. 53-66.
- 5. Христенко И.В., Холин Ю. В., Мчедлов-Петросян Н.О., Райхардт К., Зайцев В.Н. Зондирование поверхности химически модифицированных кремнеземов сольватохромными пиридиний N-фенолят бетаиновыми индикаторами // Коллоидн. журн. 2006. Т.68, No 4. С. 558-565.
- 6. Зайцев В.Н., Холин Ю.В., Шабаева Ю.В., Христенко И.В. Комплексообразование ионов некоторых переходных металлов с алифатическими аминами, ковалентно закрепленными на поверхности кремнезема // Вісник Харківського ун-ту. № 437. Хімія. Вип.3(26), 1999. С. 156-159.

- 7. Холин Ю.В., Христенко И.В. Комплексообразование Cu(II) с аминогруппами на поверхности модифицированных кремнеземов // **Вісник Харківського ун-ту.** № 596. Хімія Вип.10 (33), 2003. C.171-174.
- 8.Христенко І.В., Холін Ю.В. Согласование результатов количественного физикохимического анализа и зондирования поверхности аминокремнеземов сольватохромным бетаиновым индикатором Райхардта // Вісник Харківського унту. № 770. Хімія. Вип.15 (38), 2007. — С.245-250.
- 9.Холин Ю.В., Шабаева Ю.В., Мерный С.А., Христенко И.В. Политермическое исследование комплексообразования на поверхности аминокремнеземов // **XV Укр.** конф. з неорг. хімії. Київ, 2001. С. 24.
- 10.Холин Ю.В., Христенко И.В. Исследование поверхности кремнеземов сольватохромными индикаторами Райхардта // **IV Всерос. конф. молодых ученых**. Саратов, 2003. С. 313.
- 11.Холин Ю.В., Христенко И.В. Сорбция органических индикаторов на силикагеле // **Всеукр. конф. молодих вчених та науковців "Сучасні питання матеріалознавства".** Харків, 2003. С. 36.

- 12.Холин Ю.В., Логинова Л.П., Мчедлов-Петросян Н.О.,Водолажская Н.А., Чернышева О.С., Корнеев С.В., Мерный С.А., Христенко И.В. Особенности комплексообразования на поверхности и в матрицах гибридных материалов и в микрогетерогенных средах // **XXI Межд. Чугаевская конф. по коорд. химии**. Киев: КНУ, 2003. С.398-399.
- 13. Христенко И.В., Мчедлов-Петросян М.О., Холін Ю.В Зондування поверхні матеріалів на основі кремнезему сольватохромними бетаїновими індикаторами Райхардта // Всеукр. наук. конф. "Фізико-хімія конденсованих систем і міжфазних границь". Київ: КНУ, 2005. С. 73-77.
- 14. Христенко И.В., Холин Ю.В. Реакционная способность привитых алифатических аминов и свойства среды в приповерхностном слое аминокремнеземов // Тез. докл. **Третьей Всерос. конф. "Химия поверхности и нанотехнология".** Санкт-Петербург: ООО ИК Синтез, 2006. С. 159.
- **4**5.Kholin Yu., Myerniy S., Panteleimonov A., Khristenko I. Quantitative physicochemical analysis of processes at interfaces of hybrid silica-organic materials // **Intern. Conf. "Modern physical chemistry for advanced materials".** − Kharkiv, 2007. − P.25.
- 16.Христенко И.В., Холин Ю.В. Зондирование поверхности силикагеля // Міжн. конф. "Сучасні проблеми фізичної хімії".— Донецьк, 2007. С.178.