Христенко Инна Васильевна

Характеристики реагентов в приповерхностном слое комплексообразующих кремнеземов по данным зондирования поверхности

Научный руководитель: д.х.н., проф. Холин Ю.В.

Цель и задачи исследования: на основе зондирования поверхности ионами водорода, гидроксил ионами, ионами металлов и органическими красителями охарактеризовать важнейшие факторы, влияющие на свойства приповерхностного слоя кремнеземов, химически модифицированных слабыми органическими основаниями и кислотами, и реакционную способность привитых реагентов; установить взаимное влияние факторов.

Научные задания работы:

≻методом количественного физико-химического анализа (КФХА) установить стехиометрический состав и получить количественные данные о константах устойчивости продуктов реакций компонентов растворов (зондов) с закрепленными лигандами различных классов в зависимости от температуры, природы и концентрации фоновых электролитов; количественно охарактеризовать энергетическую неоднородность поверхности материалов;

≻изучить эффективность моделей, используемых для обработки данных КФХА, для получения информации о свойствах привитых реагентов и сформировать ограниченный набор рекомендованных моделей;

▶ на основе объединения результатов зондирования химически модифицированных поверхностей с данных КФХА оценить полярность, кислотность и топографию поверхности химически модифицированных кремнеземов в зависимости от природы и концентрации привитых реагентов.

Объекты исследования

	N⁰	Матрица	Удельная поверхность, м ² /г	Размер пор, нм	Привитая группа	Концентрация привитых групп, <i>с_L</i> , ммоль/г
	1—	Силикагель	300	5-10		—
	2	Силикагель	300	5-10	н-пропиламин ~(CH ₂) ₃ NH ₂	0.68
	3	Силохром	120	30-50	н-пропиламин ~(CH ₂) ₃ NH ₂	0.26
	4	Аэросил	200	непористый	н-пропиламин ~(CH ₂) ₃ NH ₂	0.56
	5	Аэросил	осил 200 непористый		н-пропиламин ~ (CH ₂) ₃ NH ₂	0.20
	6	Силохром	120	200	диэтиламин ~(CH ₂) ₂ NH	0.46
	7	Аэросил	200	непористый	диэтилентриамин ~NH(CH ₂) ₂ NH(CH ₂) ₂ NH ₂	0.37
	8	Аэросил	200	непористый	этилендиамин ~NH(CH ₂) ₂ NH ₂	0.59
	9	Силохром	120	200	N-бензоил-N-	0.076
	9a	9а Аэросил 175 непористый		непористый	фенилгидроксиламин	0.21
10		Силикагель	300	5-10	монокалиевая соль аминодифосфоновой кислоты	0.56 3

Индикатор	рК _а (в водном растворе)	Формула
Метиловый оранжевый, МО	3.46	$NaO_3S \longrightarrow N = N \longrightarrow O_C$
2,6-дифенил-4-(2,4,6- трифенил-пиридиний-1) фенолят, (I)	8.64	
2,6-дихлор-4-(2,4,6- трифенил-N- пиридиний)фенолят, (II)	4.76	R = Ph (I), Cl (II).

Раствор индикатора I в бутаноле, пропаноле, этаноле, метаноле, ацетофеноне, ацето-нитриле и ацетоне (слева направо) Предмет исследования: причины, определяющие особенности протекания реакций в приповерхностном слое химически модифицированных кремнеземов.

Методы исследования: количественный физико-химический анализ (КФХА) и зондирование поверхности (с применением техники спектроскопии диффузного отражения).

Зондирование поверхности силикагеля органическими индикаторами

Спектры поглощения МО на силикагеле при сорбции МО из растворов с различной кислотностью (pH=4.38; 4.02; 3.44; 3.18; 2.99; 2.43)

Изотерма сорбции МО на силикагеле 1 из раствора с pH 2.8.

Спектры поглощения индикатора I на поверхности силикагеля $(a: c_s(I) = 6.35 \cdot 10^{-6} \text{ моль·м}^{-2}, b: c_s(I) = 6.35 \cdot 10^{-5} \text{ моль·м}^{-2})$ Спектр поглощения индикатора II на поверхности силикагеля $(c_s(II) = 7.16 \cdot 10^{-8} \text{ моль · м}^{-2},$ а – влажный образец,

b – образец после термообработки при 120°С).

Нормализованный параметр полярности Райхардта

$$E_{T}^{N} = \frac{E_{T}(pacmeopumerb) - E_{T}(TMC)}{E_{T}(H_{2}O) - E_{T}(TMC)} = \frac{E_{T}(pacmeopumerb) - 30.7}{32.4}$$

$$E_{T}$$
(растворитель) = 28591/ λ_{max} (нм)

$$E_{\rm T}({\rm I}) = 191.26 - 0.947 \cdot E_{\rm T}({\rm II}) + 0.004 \cdot E_{\rm T}({\rm II})^2$$

 $E_{T}(II) = 28563 / \lambda_{Makc}^{II}$

*Kessler M.A., Wolfbeis O.S. ET(33), a solvatochromic polarity and micellar probe for neutral aqueos solution // Chemistry and Physics of Lipids. 1989. V. 50. P. 51.

	SiO ₂ (SilicagelL 5/40)	0.86		
	(400 °C)			
	SiO ₂ (Aerosil 300)**	0.84		
	SiO ₂ (Aerosil 300)**	0.90	Spange S., Reuter A., Lubda D. // Langmuir. 1999. V.	
	SiO ₂ (Aerosil 380)**	0.86		
	SiO ₂ (Aerosil 300)**	0.85		
	SiO ₂ (Aerosil 200)**	0.84	Spange S., Vilsmeier E., Zimmermann Y. // J. Phys.	
	SiO ₂ (KG 60)*	0.88	Duncan J.M., Tavener S.J., Gray G.W., Heath P.A., Rafelt J.S., Saulzet S.I., Hardy Jeff J.E., Clark J.H., Sutra P., Brunel D., Di Renzo F., Fajula F. // New J.Chem. 1999. V. 23. P. 725.	
-	SiO ₂ (KG 100)*	0.97	Tavener S.J., Clark J.H., Gray G.W., Heath P.A., Macquarrie D.J. // Chem. Commun. 1997. P. 1147- 1148.	
	Материал	ET	Литература	

* - растворитель дихлорметан

** - растворитель дихлорэтан

Зондирование поверхности аминокремнеземов

Материалы: 2 (силикагель с привитым н-пропиламином), 3 (силохром с привитым н-пропиламином) и 6 (силохром, модифицированный диэтиламином)

Модель химических реакций

Протонирование привитых групп с учетом прочной фиксации анионов солевого фона (А-)

$$\overline{Q} + H^+ + A^- \stackrel{\sigma_H}{=} \overline{QHA}$$

Гомосопряжение:

$$\overline{\text{QHA}} + \overline{\text{Q}} \stackrel{\text{K}_{\Gamma}}{=} \overline{\text{Q}_{2}\text{HA}}$$

Логарифмы констант равновесия реакций на поверхности материала 2 (298 К)

Фоновый электролит NaNO ₃								
<i>I</i> , моль/л	0.15	0.50	0.83	1.00				
lg σ _H	6.94 (0.02)*	6.52 (0.06)	6.50 (0.05)	6.32 (0.03)				
lg K $_{\Gamma}$	3.73 (0.03)	3.88 (0.08)	3.49 (0.09)	3.71 (0.05)				
Фоновый электролит КСІ								
<i>I</i> , моль/л	0.10	0.33	0.67	1.00				
lg σ _H	6.79 (0.07)	6.64 (0.02)	6.59 (0.01)	6.81 (0.01)				
Ig K _{Γ}	3.89 (0.04)	3.86 (0.03)	3.53 (0.03)	3.56 (0.03)				
	Φ0	новый электролит	Na ₂ SO ₄					
<i>I</i> , моль/л	0.10	0.50	0.67	1.00				
lg σ _H	7.40 (0.03)	6.75 (0.03)	6.64 (0.03)	6.57 (0.03)				
lg K _{Γ}	3.43 (0.06)	3.46 (0.05)	3.54 (0.05)	3.54 (0.05)				

Логарифмы констант равновесия реакций на поверхности материала 3 (298 К)

	Фоновый электролит NaNO ₃										
<i>I</i> , <u>моль</u> /л	пь/л 0.05		0.10	0.25	0.30	0.50	0.75	0.80	1.00		
lg $\sigma_{_{ m H}}$	7.2	6 (0.05)	7.10 (0.06)	6.79 (0.04)	6.77 (0.04)	6.43 (0.03)	6.31 (0.03	6.27 (0.04)	6.39 (0.03)		
lg K _{Γ}	3.8	6 (0.09)	3.93 (0.09)	3.86 (0.08)	3.94 (0.07)	3.77 (0.06)	3.79 (0.05	3.78 (0.07)	3.59 (0.07)		
				Фоновь	ій электрол	ит MgSO ₄		·			
<i>I</i> , моль/	Л	0.15		0	0.47		0.68		1.00		
$\log \sigma_{\rm H}$		7.36 (0.03)		6.92	6.92 (0.04)		.03)	6.32 (0.03)			
lg K _Γ		3.73 (0.05)		3.58	3.58 (0.06)		3.61(0.05)		3.69 (0.06)		

Логарифмы констант равновесия реакций на поверхности материала 6 (298 К)

	Фоновый электролит NaNO ₃							
<i>I</i> , моль/л 0.10 0.17 0.50 0.67 0.83 1.00								
lg $\sigma_{\rm H}$	8.34 (0.04)	8.17 (0.05)	7.26 (0.04)	6.77 (0.06)	6.62 (0.08)	6.70 (0.08)		
lg K _{Γ}	4.01 (0.07)	2.8 (0.2)	3.69 (0.07)	4.13 (0.08)	4.12 (0.12)	3.86 (0.12)		
		Фоновы	й электролит	r Na ₂ SO ₄				
<i>I</i> , моль/л	0.17	0.33	0.50	0.67	0.83	1.00		
$\log \sigma_{\rm H}$	8.17 (0.03)	7.71(0.04)	7.09 (0.04)	7.13 (0.04)	7.02 (0.04)	6.87 (0.04)		
lg K _Γ	2.84 (0.11)	3.33 (0.10)	3.77 (0.06)	3.51 (0.07)	3.37 (0.08)	3.05 (0.12) ¹³		

Модель бидентатных центров: при протонировании аминокремнеземов происходит последовательное (ступенчатое) присоединение ионов H⁺ к бидентатным центрам:

Логарифмы констант равновесия на поверхности материала 6

I, моль·л ⁻¹	0.10	0.17	0.50	0.67	0.83	1.00
lg K _{H1}	8.82	8.05	7.92	8.08	8.00	7.72
	(0.04)	(0.06)	(0.08)	(0.08)	(0.11)	(0.12)
lg K _{H2}	5.88	6.77	5.28	5.05	5.25	5.67
	(0.06)	(0.07)	(0.08)	(0.10)	(0.12)	(0.14)

Термодинамические характеристики равновесия сорбции ионов водорода на поверхности аминокремнеземов

Кинетика сорбции ионов водорода на поверхности аминокремнеземов

Зависимость изменения концентрации ионов H⁺ от времени (матеріал 6, фоновий електролит NaCl, I = 0.1 моль·л⁻¹, 323 K, степень протонирования f = 0.76).

$$C(t) / C(0) \approx a_0 - 2b\sqrt{t}$$
 $\mathbf{b} = g\left(\frac{\mathbf{p}(1+\mathbf{K})\mathbf{D}}{\pi}\right)^{1/2}$

Зондирование аминокремнеземов ионами металлов

$$\operatorname{Cu}^{2+} + \overline{\mathrm{Q}} + 2NO_3^{-} \stackrel{\sigma_1}{=} \overline{CuQ(NO_3)_2}$$

$$\operatorname{Cu}^{2+} + 2\overline{\mathrm{Q}} + 2NO_3^{-} = \overline{\operatorname{Cu}Q_2(NO_3)_2}$$

Логарифмы констант устойчивости аминокомплексов Cu(II) на поверхности материала 2

I, моль:л ⁻¹	293 К	30	03 K	31.	313 К	
	$\lg \sigma_2$	$\lg \sigma_1$	$\lg \sigma_2$	$\lg \sigma_1$	$\lg \sigma_2$	
0.10	11.22	~6	11.12	5.71	10.98	
0.50	9.17	~5	9.18	4.50	8.80	
0.75		~4	8.70	4.27	8.39	
1.00		~4	8.45	4.25	8.25	
I→0			12.72	6.93	12.76	

Логарифмы констант устойчивости аминокомплексов Cu(II) на поверхности материала 6

I,	I, 293 K		303 K		313 К		323 K	
 МОЛЬ/Л	lg σ_2	lg σ_1	$\lg \sigma_2$	$\lg \sigma_1$	lg σ_2	$\log \sigma_1$	$\log \sigma_2$	
0.10	10.28	-	10.98	7.04	12.28	-	12.16	
0.50	10.31	5.6	11.12	-	13.62	-	9.05	
0.75	10.17	-	12.79	6.40	-	6.46	-	
1.00	13.11	-	13.57	7.17	-	-	12.63	
I→0	~12		~12					

Логарифмы констант устойчивости аминокомплексов ионов металлов на поверхности материалов 2 и 8 (T=293 K, I =0.1 моль/л).

Металл	Материал 2	Материал 8	
	lg σ_2	lg σ_1	
Co ²⁺	6.49 (0.15)	4.21 (0.14)	
Ni ²⁺	6.44 (0.15)	4.35 (0.04)	
Zn^{2+}	8.44 (0.11)		

поверхности материала 3 (поверхностная концентрация 0.03 (а) и 0.29 (b) мкмоль·м⁻²

Функция распределения привитых групп по логарифмам констант равновесия для материала 3 Спектр поглощения индикатора I на поверхности материала 4 (поверхностные концентрации 0.04 (1), 0.09 (2), 0.18 (3), 0.23 (4) мкмоль·м⁻²

Спектр поглощения индикатора II на поверхности материала 3 (c(II)=0.16 мкмоль·м⁻²) и 4 (c(II)=0.15 мкмоль·м⁻²). 19

Зондирование кремнеземов, модифицированных группами N-бензоил-N-фенилгидроксиламина (БФГА), материалы 9 и 9^a

Зондирование ионами ОН-:

Диссоциация групп бензоилфенилгидроксиламина с учетом прочной фиксации противоиона К⁺ фонового электролита

 $\overline{HQ} + K^+ = H^+ + \overline{KQ}$

Реакция гомосопряжения:

 $\overline{HQ} + \overline{KQ} = \overline{KHQ_2}$

Результаты оценки энергетической неоднородности групп БФГА на поверхности материала 9 (при ионных силах раствора: 1 – 0.1, 2 – 0.5, 3 – 0.75 и 1 – 1 моль/л и 298 K)

Результаты оценки энергетической неоднородности групп БФГА на поверхности материала 9^а (при ионных силах раствора : 1 – 0.1, 2 – 0.5, 3 – 0.75 и 1 – 1 моль/л и 298 К)

24

Металл	I, моль/л	Реакция	lg β_1	
Cu ²⁺	0.1		4.47	
	0.5	$Cu^{2+} + \overline{Q^-} + A^- = \overline{CuQA}$	3.94	
	1.0		4.97	
	2.5		7.08	
Ni ²⁺	1	$Ni^{2+} + \overline{Q^-} + A^- = \overline{NiQA}$	3.19	
Cd ²⁺	0.1	$Cd^{2+} + \overline{Q^-} + A^- = \overline{CdQA}$	2.32	
Co ²⁺	1	$\operatorname{Co}^{2+} + \overline{\operatorname{Q}^{-}} + \operatorname{A}^{-} = \overline{\operatorname{CoQA}}$	3.33	
Pb ²⁺	0.1	$Pb^{2+} + \overline{Q^-} + A^- = \overline{PbQA}$	3.76	
Zn ²⁺	0.1	$Zn^{2+} + \overline{Q^-} + A^- = \overline{ZnQA}$	5.52	
Fe ³⁺	0.1	$Fe^{3+} + \overline{HQ} + 2A^- = \overline{FeQA_2} + H^+$	8.04	

Зондирование поверхности материала 9 ионами металлов

Спектр поглощения комплекса Fe(III) с БФГА на поверхности материала 9 $(c_s(Fe) = 0.98 \text{ мкмоль} \cdot \Gamma^{-1})$

Результаты зондирования силикагеля, модифицированного аминодифосфонофой кислотой, сольватохромными бетаиновыми индикаторами

Спектры поглощения сольватохромных индикаторов I (*a*) *и* и II (*b*) на материале 10 при поверхностной концентрации зондов 6.26·10⁻⁸ моль·м⁻².

Выводы

- Из анализа литературных данных следует, что для прогнозирования свойств гибридных материалов на основе аморфных кремнеземов, оптимизации условий их использования необходима развернутая информация о топографии, полярности и однородности поверхности материалов. Получение такой информации с помощью физико-химических методов исследования и количественного физико-химического анализа требует усовершенствование методологии исследования поверхности материалов и разработке комплексного подхода для оценивания топографии и однородности поверхности.
- Зондирование поверхности немодифицированного силикагеля бетаиновыми сольватохромными индикаторами Райхардта при нанесении зондов из этанольного раствора приводит к оценкам полярности =0.86, что близко к значениям 0.84-0.9, полученных при использовании ранее известных методик нанесения зондов из апротонных растворителей, что подтверждает правомерность методики, предложенной в данной работе.

•По результатам зондирования поверхности аминокремнеземов ионами водорода найдено, что их связывание с привитыми аминогруппами сопровождается гомосопряжением аминогрупп (кооперативный эффект), протекает на энергетически неоднородных центрах, с прочной фиксацией противоионов на заряженных центрах. Повышение температуры способствует гидратации приповерхностного слоя, что нивелирует проявление энергетической неоднородности и влияние кооперативных эффектов.

Тип кремнеземного носителя (пористый, мезапористый, непористый), природа и концентрация фонового электролита не изменяют структуру модели, что описывает равновесие на поверхности аминокремнеземов и лишь незначительно влияет на оценки констант равновесия.

Зондирование поверхности аминокремнеземов сольватохромными бетаиновыми индикаторами Райхардта выявило наличие граничной концентрации стандартного бетаинового индикатора, при повышении которой наблюдается окрашивание индикатора. Это свидетельствует о наличие на поверхности областей с высокой и пониженной кислотностью. Большая ширина полосы поглощения зондов на поверхности аминокремнеземов, наличие в спектрах двух полос поглощения В видимой области и широкий интервал варьирования значения параметра полярности среды, свидетельствует о многообразии типов микроокружения ЗОНДОВ В приповерхностном слое, а также о неравномерном распределении привитых реагентов на поверхности и приближает свойства среды в приповерхностном слое к свойствам органических растворителей и водно-органических смесей. 28

Такие свойства приповерхностного слоя способствуют проявлению энергетической неоднородности реагентов и кооперативных эффектов. Таким образом, ключевым фактором, который определяет протекание реакций на поверхности аминокремнеземов, выступает взаимодействие аминов с остаточными поверхностными силанольными группами и параметры среды в приповерхностном слое.

• По данным КФХА установлено, что протонизация привитых аминов и образование ими металлокомплексов – слабо эндотермические процессы и сопровождаются увеличением энтропии. Отличие термодинамических характеристик процессов на поверхности от реакций в растворе можно объяснить с учетом особенностей реакционной среды в приповерхностном слое: протонизация аминов сопровождается фиксацией противоинов, которые при переходе из раствора на поверхность частично теряют гидратную оболочку.

• Связывание ионов водорода аминокремнеземами описывает модель диффузии из полубесконечного раствора. Выявлен двухстадийный характер процесса, когда на быстрой первой стадии связываются большая часть введенных в раствор ионов водорода, тогда, как вторая медленная стадия может длиться несколько часов. Соотношение "быстрых" и "медленных" центров сорбции значительно зависит от температуры и степени протонизации аминогрупп.

- Зондирование поверхности кремнеземов, модифицированных группами Nбензоил-N-фенилгидроксиламином (БФГА), ионами ОН- свидетельствует про неоднородность привитых реагентов высокую энергетическую И значительное влияние химической неоднородности поверхности (наличие остаточных аминогрупп) на свойства привитых групп БФГА. Среда в приповерхностном слое материала, полученного методом поверхностной сборки, характеризуется большей неоднородностью по сравнению с исходными аминокремнеземами, что выражается в достаточно широком интервале варьирования рКа закрепленного БФГА. При образовании комплексов этого реагента с ионами Cu(II), Cd(II), Ni(II), Zn(II), Pb(II) и Fe(III) наблюдается вырождение стехиометрии взаимодействия металллиганд и образование единственного комплекса эквимолярного состава (в отличие от комплексов, образующихся в растворе состава 1:1, 1:2, 1:3). Образование устойчивого интенсивно окрашенного поверхностного комплекса Fe(III) с БФГА позволило использовать данный материал для селективного определения Fe(III) в растворах с помощью твердофазной спектрофотометрии.
- Зондирование сольватохромными индикаторами поверхности силикагеля с привитыми группами аминодифосфоновой кислоты свидетельствует о наличие на поверхности областей, что значительно отличаются полярностью и кислотностью, т.е. подтверждает увеличении неоднородности поверхности при её модификации методом поверхностной сборки.

- Для количественного описания равновесий на поверхности модифицированных кремнеземов достаточно использовать феноменологические модели ДВУХ типов: учитывающие множество химических форм на поверхности и кооперативные эффекты (модель химических реакций или модель полидентатных центров) и модель непрерывного распределения констант равновесия, которая количественно оценивает энергетическую неоднородность привитых реагентов.
- Показано, что выводы, полученные по данным КФХА и при зондировании поверхности сольватохромными бетаиновыми индикаторами Райхарта, подтверждают и дополняют друг друга, что позволяет рекомендовать подход, базирующийся на одновременном использовании этих независимых методов, как общий для характеристики поверхностей гибридных материалов.

Публикации

- 1. Холин Ю.В., Христенко И.В. Кремнезем, химически модифицированный бензоилфенилгидроксиламином, в сорбции и твердофазном спектрофотометрическом определении Fe(III) // Журн. прикл. химии 1997. Т.70, No 6. С. 939-942.
- 2. Холин Ю.В., Коняев Д.С., Христенко И.В. Протолитические свойства бензоилфенилгидраксиламина, привитого на поверхность кремнезема // Журн. физ. химии 1997. Т.71, No 3. С. 517-520.
- Zaitsev V.N., Kholin Yu.V., Gorlova E.Yu., Khristenko I.V. Silica chemically modifed with N-benzoyl-N-phenylhydroxylamine in chemisorption of hydrogen and metal ions // Anal. Chim. Acta. – 1999. - V.379, No 1-2. – P. 11-22.
- 4. Kholin Yu.V., Myerniy S.A., Shabaeva Yu.V., Samoteikin A.A., Sumskaya N.R., Khristenko I.V. Chemisorption of hydrogen ions on aminosilica surfaces at different temperatures // Adsorption Sci. and Technology 2003. V.21, No 1. P. 53-66.
- 5. Христенко И.В., Холин Ю. В., Мчедлов-Петросян Н.О., Райхардт К., Зайцев В.Н. Зондирование поверхности химически модифицированных кремнеземов сольватохромными пиридиний N-фенолят бетаиновыми индикаторами // Коллоидн. журн. – 2006. – Т.68, No 4. – С. 558-565.
- 6. Зайцев В.Н., Холин Ю.В., Шабаева Ю.В., Христенко И.В. Комплексообразование ионов некоторых переходных металлов с алифатическими аминами, ковалентно закрепленными на поверхности кремнезема // Вісник Харківського ун-ту. № 437. Хімія. Вип.3(26), 1999. С. 156-159.

7.Холин Ю.В., Христенко И.В. Комплексообразование Cu(II) с аминогруппами на поверхности модифицированных кремнеземов // Вісник Харківського ун-ту. № 596. Хімія Вип.10 (33), 2003. – С.171-174.

8.Христенко І.В., Холін Ю.В. Согласование результатов количественного физикохимического анализа и зондирования поверхности аминокремнеземов сольватохромным бетаиновым индикатором Райхардта // Вісник Харківського унту. № 770. Хімія. Вип.15 (38), 2007. – С.245-250.

9.Холин Ю.В., Шабаева Ю.В., Мерный С.А., Христенко И.В. Политермическое исследование комплексообразования на поверхности аминокремнеземов // **XV Укр.** конф. з неорг. хімії. – Київ, 2001. – С. 24.

10.Холин Ю.В., Христенко И.В. Исследование поверхности кремнеземов сольватохромными индикаторами Райхардта // **IV Всерос. конф. молодых ученых**. – Саратов, 2003. – С. 313.

11.Холин Ю.В., Христенко И.В. Сорбция органических индикаторов на силикагеле // Всеукр. конф. молодих вчених та науковців "Сучасні питання матеріалознавства". – Харків, 2003. – С. 36. 12.Холин Ю.В., Логинова Л.П., Мчедлов-Петросян Н.О.,Водолажская Н.А., Чернышева О.С., Корнеев С.В., Мерный С.А., Христенко И.В. Особенности комплексообразования на поверхности и в матрицах гибридных материалов и в микрогетерогенных средах // XXI Межд. Чугаевская конф. по коорд. химии. – Киев: КНУ, 2003. – С.398-399.

13.Христенко И.В., Мчедлов-Петросян М.О., Холін Ю.В Зондування поверхні матеріалів на основі кремнезему сольватохромними бетаїновими індикаторами Райхардта // Всеукр. наук. конф. "Фізико-хімія конденсованих систем і міжфазних границь". – Київ: КНУ, 2005. – С. 73-77.

14.Христенко И.В., Холин Ю.В. Реакционная способность привитых алифатических аминов и свойства среды в приповерхностном слое аминокремнеземов // Тез. докл. **Третьей Всерос. конф. "Химия поверхности и нанотехнология".** – Санкт-Петербург: ООО ИК Синтез, 2006. – С. 159.

15.Kholin Yu., Myerniy S., Panteleimonov A., Khristenko I. Quantitative physicochemical analysis of processes at interfaces of hybrid silica-organic materials // Intern. Conf. "Modern physical chemistry for advanced materials". – Kharkiv, 2007. – P.25.

16.Христенко И.В., Холин Ю.В. Зондирование поверхности силикагеля // Міжн. конф. "Сучасні проблеми фізичної хімії".– Донецьк, 2007. – С.178.