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Svante Wold, Umea University:

Chemometrics: “How do we get chemically relevant 
information out of measured chemical data, how do we 
represent and display this information, and how do we get 
such information into data?”

A chemical model (M) relating experimentally determined 
variables, X, to each other, necessarily is associated with a model 
of noise (E). This model, E, describes the variability (noise)
X = M + E; Data = Chemical Model + Model of Noise 
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The problems and drawbacks not excluded even at using modern 
statistical packages:
– the lack of ability to detect the real outliers and, at the same time, the 
tendency to exclude suspicious measurements without sufficient justification,
– the inherent danger to over-fit data and to build models with good fitting 
but no predictive ability and to obtain the meaningless values of fitting 
parameters (the inevitable risk at solving ill-posed problems),
– the application of common statistical methods for data handling at 
situations when the statistical premises are certainly disturbed (for instance, 
for data arrays for QSAR or QSPR analysis).

Nobody can guarantee that the standard statistical 
procedures give the trustworthy results
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Data analysis includes every procedures of data handling that 
can not be completely formalized (the complete 
algorithmization is impossible):
- consideration of data at variation of hypotheses about 
statistical and another properties of measurements,
- the set of models rather than the only one model are used to 
interpret data.

Y. Adler, 1982:
Data analysis invents procedures to use completely intrinsic 
(endogene) information about measurements but also it is 
aimed at the highest possible involvement of the external 
information.
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The aim of this report is to demonstrate a few 
procedures of data treatment used in our practice 
that follow the methodology of data analysis and 
allow to overcome some drawbacks of 
conventional statistical procedures.

Topics to be discussed

1. Robust regression on the base of Huber’s 

M-estimates vs. ordinary least squares.

2. Some aspects of data handling in QSAR.

3. Regularization of ill posed problems: where does its 
power end? What tools can be used else? (analysis of the 
energetic heterogeneity of sorbents).
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Robust regression on the base of Huber’s 
M-estimates vs. ordinary least squares
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Robust estimators
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Examples of loss functions

Lq – estimates: ρ(ξ) = |ξ|q, 1 ≤ q < 2 
 Welsch estimates: ρ(ξ) = d2 / 2⋅[1-exp(-ξ/d)2], d > 0, 
 Demidenko estimates: ρ(ξ) = ξ2 / (ξ + d), d > 0, 
 Andrews estimates: 
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The model of gross errors

р(ε) = [(100 - δ)⋅ϕ(ε) + δ⋅h(ε)] / 100, 
ϕ(ε) – density function of the normal distribution, 
h(ε) – long-tails density function (“gross errors” density function), 
δ –  intensity of “gross errors” density function, %. 
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constant cout depends on the intensity of the “gross errors” density function

at δ = 0 M-estimates are identical to the ordinary least squares,  
at δ → 100% M-estimates coincide with the estimates of the least absolute values 
method. 
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Merits and demerits of M-estimates

An experimenter can not distinguish the conditions of 
measurements leading to the normal or the Laplace
distributions of errors.

Merits
•– both normal and Laplace distributions are limiting laws (statistics 
theory),
•– conditions of their formation are close (experiment),
•– Robust Huber’s M-estimates have the MLM substation (theory),
•– data analysis approach may be realized through changing 
hypothesis on δ, intensity of “gross errors” (practice of data handling).

The main demerit consists of rather complicated calculations.
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Non-linear regression model of protolytic 
equilibria of m-Aminobenzoic acid (HQ) studied by 

the spectrophotometric method
Chemical model 

 HQ + H+ HK
= H2Q+, 

 HQ 
aK

= Q- + H+ 

Data 
Absorbances of 26 solutions (1.7 < pH < 6.2) at 5 wavelengths (200-300 nm).  

The ordinary weighed non-linear least squares method:
pKa = 4.376±0.004
log KH = 2.893±0.007
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The weighed residuals for δ = 0 (OLS) point to the 
possible presence of outliers
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M-estimates of fitting parameters
Parameters δ, % 
log KH pKa 

0 2.893 4.376 
5 2.898 4.393 
10 2.905 4.399 
20 2.919 4.417 
30 2.924 4.419 
40 2.929 4.421 
50 2.931 4.423 
60 2.933 4.424 
70 2.934 4.425 
80 2.935 4.426 
90 2.936 4.426 
100 2.937 4.426 
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At δ ≥ 20 %, estimations of parameters are not changed 
significantly (but errors grow with increasing δ), the following М-
estimates were accepted
log KH = 2.93±0.01; pKa = 4.425±0.005.
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QSAR
Svante Wold:
“Populations are relevant to genetics, but usually 

not to chemistry; we are not interested in the 
average boiling point of the "population" of 
organic esters, but rather in the boiling point of 
each individual ester as a function of its 
structure.
We are not willing to think of chemical 
properties, such as melting points, viscosities, 
or enzymatic reaction rates, as drawn from 
multivariate distributions”.
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Suppositions
• handling data from small designed sets of 

chemical objects (QSAR modeling) has 
specific features (objects do not belong to the 
same population and are not exchangeable),

• in such tasks the robust estimation can be 
simplified: it is possible to compare only the 
OLS and L1 estimations,

• cross-validation (CV) can be applied as 
heuristic but useful tool.
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Analgetic Activity of the Capsaicin
ANALOGUES

OCH3OH

O R

CH2
NH

R = H, Cl, NO2, CN, C6H5, N(CH3)2,  I,  NHCHO 
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50EC (µM) is the effective concentration of the capsaicin
leading to decreasing Ca2+ influx on 50%

OLS:                         MR0.068-1.137EClog- 50 ⋅=  

L1:                         MR0.070- 1.142EClog- 50 ⋅=  

 r q 
OLS 0.726 0.554 
L1 0.725 0.715 
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Using the hydrofobic substituent constants (π)

OLS:  π⋅= 0.815-770.0EClog- 50 ,  r = 0.943,  q = 0.877 

L1:  π⋅= 0.708- 767.0EClog- 50 , r = 0.940,   q = 0.846 
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TWO EXAMPLES  OF CROSS-VALIDATION IN 
THE QSAR DISCRIMINANT ANALYSIS
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Carcinogenic activity of the condenced
hydrocarbons

KL

Interaction of cells with K-region leads to cancer
while the interaction with L-region deactivates
hydrocarbons
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The activity of K– and L– regions can be estimated 
with using quantum chemistry indices (electrophylic
superdelocalizability, Se).

The discriminant function:

0)L(S2.4)K(S7.171.24 ee >−+−

All training set: efficiency 100%
LOO-CV: 80%
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Relative binding affinity of the estradioles

CH3 OH
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All training set (150 substances): efficiency 88%
LOO-CV: 75%
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Regularization of ill posed problems: 
where does its power end? What 

tools can be used else?
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Small α

High α

p(K)

K

Influence of α on the shape of density functions
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accepted
value

α∗ α0=αmin

U~ Cross-validatory search for α
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Maxent approach
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restrictions imposed on the searched density 

function p(K)
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Numerical example

p(log K = 2) = p(log K = 5) = p(log K = 6) = 1/3 
The density function p(log K)
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The density function p(log K) calculated by the 
conventional α-regularization algorithm from 

exact data
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