International Chemistry Olympiads: 40 years of youth science competitions. Their impact on the elitist secondary and higher education

Yuriy Kholin
V.N. Karazin Kharkiv National University
Kharkiv, Ukraine

http://www-chemo.univer.kharkov.ua
OUTLINE

- What is IChO?
- Organization of competition
- Syllabus, problems and results
- Ukrainian Chemistry Olympiads
- Preparation of Ukrainian teams
- Influence of olympiads on education and preparation of researchers
What is IChO?

“The International Chemistry Olympiad is a chemistry competition for students at secondary school level with the aim of promoting international contacts in chemistry. It is intended to stimulate the activities of students interested in chemistry by a way of independent and creative solving of chemical problems. The IChO competitions help to enhance friendly relations among young people from different countries; they encourage cooperation and international understanding”

Regulations of the International Chemistry Olympiad, § 1
Early beginning: 1st olympiads

1934: Mathematics (Leningrad and Moscow Universities, correspondence form).
1938: Physics (Leningrad University, correspondence form)
1939: Chemistry (Leningrad University, correspondence form)
1963: Ukrainian chemistry olympiad.
1966: Soviet Union chemistry olympiad.
1968: International Chemistry Olympiad (Prague, Czechoslovakia), 3 participating countries: Czechoslovakia, Poland, Hungary
Participating countries

49th Mathematics olympiad, 101 countries
40th Chemistry olympiad, 68 countries
39th Physics olympiad, 82 countries

2008:
19th Biology olympiad, 55 countries
7th Geography olympiad, 23 countries
13th Astronomy olympiad, 42 countries
16th Ecology olympiad, 41 countries
20th Informatics Olympiad

4 students (younger 20)
2 mentors
not more than 2 observers
Organizers

1999 – Thailand, Bangkok
2000 – India, Mumbai
2001 – Denmark, Copenhagen
2002 – the Netherlands, Groningen
2003 – Greece, Athens
2004 – Germany, Kiel
2005 – Taiwan, Taipei
2006 – Korea, budget $ 3 mln
2007 – Russia, Moscow University, budget $ 3 mln
2008 – Hungary, Budapest, budget $ 1.5mln
2009 – UK, Cambridge & Oxford Universities
2010 – Japan, Tokyo, budget up to $ 5 mln
2014 – Vietnam, 2015 - Thailand

Patrons and sponsors

➢ UNESCO (at the early beginning), IUPAC, governments, universities, municipalities, national chemistry societies;
➢ chemical, petrochemical and pharmaceutical industry, charitable organizations.
Opening ceremony
Welcome reception
Inspection of labs
Discussion of tasks
Translation
Practical and theoretical exams
Social program
Marking and arbitration. Closing ceremony

Professor Jung-II Jin, the IUPAC President

Dmytriy Medvedev, President of Russia
Syllabus and problems

Regulations:
The organizer distributes a set of preparatory tasks written in English to all participating countries in the January of the competition year.

Basic chemical concepts and facts may be included into the olympiad tasks without any mention in the preparatory problems. The elementary laboratory skills are needed too (for instance, heating under reflux; mass and volume exact measurements; carrying out of test tube reactions; testing for organic functional groups; volumetric titrations: measurement of pH by pH-meter).

6 theoretical and 2 practical complicated topics may be included into the preparatory problems.
Examples of advanced knowledge and skills

- Schrödinger equation, MO theory
- IR, NMR and mass-spectra
- Inorganic stereochemistry, isomerism in complexes
- Solid state structures and Bragg’s law
- Formal kinetics, determination of activation energy, collision theory, steady-state and quasi-equilibrium approximations, mechanisms of catalytic reactions
- Phase diagrams and the Clausius-Clapeyron equation
- Calculation of solution and multiphase equilibria
- Stereoselective transformations (diastereoselective, enantioselective), optical purity
- Conformational analysis, use of Newman projections
Examples of advanced knowledge and skills

- Aromatic nucleophilic substitution, electrophilic substitution on polycyclic aromatic compounds and heterocycles
- Supramolecular chemistry
- Advanced polymers, rubbers, copolymers. Kinetics of polymerization
- Enzymes and classification according to reaction types, active sites, coenzymes and cofactors, mechanism of catalysis
- Synthesis in microscale equipment
- Advanced inorganic and organic qualitative analysis
- Spectrophotometry
- Extraction with immiscible solvents
- TL and column chromatography
Motivations

• To get pleasure from mental work
• To learn something new about chemistry
• To suggest creative problems
• To introduce modern chemistry to the students

Chemistry at the 39th IChO, Moscow, 2007

Problem 1. Proton Tunneling

Avg. 66%

Main ideas:

Quantum mechanics is everywhere in chemistry.

Theoreticians think in terms of numbers, functions and energy curves
Problem 2. Nanochemistry

Avg. 40%

Main ideas:

Thermodynamic functions are size-dependent.

Change of the particle size can be in favor of both desirable and undesirable reactions.
Problem 3. Unstable Reactions

Avg. 56%

Main ideas:

In an open system autocatalytic steps can lead to an oscillatory behavior

Changing the initial concentrations or the rate constants can result in the different kinetic curves
Problem 4. Determination of Water by Fischer Titration

Avg. 43%

Main ideas:

Fischer method was discovered 100 years ago but still is the best method for the determination of water

The problems involves complicated stoichiometric calculations which vary from substance to substance
Problem 5. A Mysterious Mixture (Organic Hide-and-seek Game)

Avg. 31%

Main idea:

There are some “hidden forms” of acetic acid.
Problem 6. Silicates as the Base of the Earth Crust

Avg. 50%

Main ideas:

Chemistry (even of silicon) is not boring at all

Chemistry is not only formulas and equations but also nice pictures
Problem 7. Atherosclerosis and Intermediates of Cholesterol Biosynthesis

Avg. 25%

Main idea:

Understanding the cholesterol metabolism is crucial for the treatment and prevention of cardiovascular diseases
Problem 8. ATRP Allows New Polymers

Avg. 26%

Main idea:

Atom transfer radical polymerization (ATRP) is an important novel approach for the controlled radical polymerization
Chemistry at the 39th IChO, Moscow, 2007

Experimental Problem 1. Ion-exchange chromatography of amino acids

Avg. 31%

Main idea and steps:

Separation of a mixture of three amino acids with subsequent qualitative and quantitative analysis

Main idea:

Determination of two ions in a mixture by acid-base titration. The procedure involves all basic analytical techniques: dissolution, precipitation, filtering, titration, calculations.

\[
\begin{align*}
\text{Ca}^{2+} + \text{H}_2\text{PO}_4^- & \rightarrow \text{CaHPO}_4 + \text{H}^+ \\
3\text{Ca}^{2+} + 2\text{HPO}_4^{2-} & \rightarrow \text{Ca}_3(\text{PO}_4)_2 + 2\text{H}^+
\end{align*}
\]
The most difficult practical task at the 40th IChO

You have 8 unknown aqueous solutions. Each solution contains only one compound. The same ion may appear in more than one solution. Every compound formally consists of one type of cation and one type of anion from the following list:

Cations: H\(^+\), NH\(_4\)\(^+\), Li\(^+\), Na\(^+\), Mg\(^{2+}\), Al\(^{3+}\), K\(^+\), Ca\(^{2+}\), Cr\(^{3+}\), Mn\(^{2+}\), Fe\(^{2+}\), Fe\(^{3+}\), Co\(^{2+}\), Ni\(^{2+}\), Cu\(^{2+}\), Zn\(^{2+}\), Sr\(^{2+}\), Ag\(^+\), Sn\(^{2+}\), Sn\(^{4+}\), Sb\(^{3+}\), Ba\(^{2+}\), Pb\(^{2+}\), Bi\(^{3+}\)

Anions: OH\(^-\), CO\(_3\)\(^{2-}\), HCO\(_3\)\(^-\), CH\(_3\)COO\(^-\), C\(_2\)O\(_4\)\(^{2-}\), NO\(_2\)\(^-\), NO\(_3\)\(^-\), F\(^-\), PO\(_4\)\(^{3-}\), HPO\(_4\)\(^{2-}\), H\(_2\)PO\(_4\)\(^-\), SO\(_4\)\(^{2-}\), HSO\(_4\)\(^-\), S\(^{2-}\), HS\(^-\), Cl\(^-\), ClO\(_4\)\(^-\), MnO\(_4\)\(^-\), Br\(^-\), I\(^-\)

You have test tubes and heating but no additional reagents apart from distilled water and pH paper.

Identify the compounds in the solutions 1-8. If you are unable to identify an ion exactly, give the narrowest selection possible.
The most difficult practical task at the 40th IChO
2 hours, maximum 108 pts
The final results of the 40th IChO
Maximum possible mark: 100

257 participants

30 gold medals
Marks: 88-66.7

52 silver medals
Marks: 66.6-56

78 bronze medals
Marks: 66.6-41
<table>
<thead>
<tr>
<th>Year (in 2005 China was absent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
</tr>
<tr>
<td>1. China</td>
</tr>
<tr>
<td>2. Thailand</td>
</tr>
<tr>
<td>3. Taiwan</td>
</tr>
<tr>
<td>4. Ukraine</td>
</tr>
<tr>
<td>5. Korea</td>
</tr>
<tr>
<td>6. Austria</td>
</tr>
<tr>
<td>7. USA</td>
</tr>
<tr>
<td>8. Poland</td>
</tr>
<tr>
<td>9. India</td>
</tr>
<tr>
<td>10. Germany</td>
</tr>
<tr>
<td>11. Iran</td>
</tr>
<tr>
<td>12. Hungary</td>
</tr>
<tr>
<td>13. Russia</td>
</tr>
<tr>
<td>14. Canada</td>
</tr>
<tr>
<td>15. Turkey</td>
</tr>
<tr>
<td>16. Australia</td>
</tr>
<tr>
<td>17. UK</td>
</tr>
<tr>
<td>18. Singapore</td>
</tr>
<tr>
<td>19. Spain</td>
</tr>
<tr>
<td>20. Slovakia</td>
</tr>
<tr>
<td>21. Belarus</td>
</tr>
<tr>
<td>22. Vietnam</td>
</tr>
<tr>
<td>23. Finland</td>
</tr>
<tr>
<td>24. France</td>
</tr>
<tr>
<td>25. Lithuania</td>
</tr>
<tr>
<td>26. Czech</td>
</tr>
</tbody>
</table>

| 2003 |
| 1. China |
| 2. Iran |
| 3. Korea |
| 4. Thailand |
| 5. Belarus |
| 6. Russia |
| 7. India |
| 8. Singapore |
| 9. Turkey |
| 10. Taiwan |
| 11. Ukraine |
| 12. Poland |
| 13. Canada |
| 14. Czech |
| 15. Romania |
| 16. USA |
| 17. Vietnam |
| 18. Estonia |
| 19. UK |
| 20. Australia |
| 21. Hungary |
| 22. Slovakia |
| 23. USA |
| 24. Venezuela |
| 25. India |
| 26. France |
| 27. Slovakia |
| 28. Austria |
| 29. Belarus |
| 30. Vietnam |
| 31. Finland |
| 32. France |
| 33. Lithuania |
| 34. Czech |
| 35. Brazil |

| 2004 |
| 1. China |
| 2. Korea |
| 3. Russia |
| 4. Ukraine |
| 5. Germany |
| 6. Poland |
| 7. Taiwan |
| 8. Hungary |
| 9. Turkey |
| 10. Vietnam |
| 11. Indonesia |
| 12. Belgium |
| 13. Slovakia |
| 14. Austria |
| 15. Belarus |
| 16. Vietnam |
| 17. Hungary |
| 18. Australia |
| 19. France |
| 20. Indonesia |
| 21. Brazil |
| 22. France |
| 23. Lithuania |
| 24. Czech |
| 25. Brazil |

| 2005 |
| 1. Korea |
| 2. Vietnam |
| 3. Iran |
| 4. Russia |
| 5. Taiwan |
| 6. Thailand |
| 7. Argentina |
| 8. Germany |
| 9. Italy |
| 10. Austria |
| 11. Ukraine |
| 12. Czech |
| 13. Poland |
| 14. Australia |
| 15. Turkey |
| 16. Hungary |
| 17. Slovakia |
| 18. USA |
| 19. UK |
| 20. Romania |
| 21. Belgium |
| 22. Singapore |
| 23. Japan |
| 24. Indonesia |
| 25. Latvia |
| 26. Belgium |

43. Brazil 44. Brazil 45. Brazil 46. Brazil
Unofficial command ranks

2006
1. China
2. Taiwan
3. Korea
4. Russia
5. Korea
6. Vietnam
7. Thailand
8. Japan
9. Poland
10. India
11. Germany
12. Slovakia
13. Denmark
14. Ukraine
15. Singapore
16. Brazil
17. Canada
18. USA
19. Hungary
20. Czech
21. Australia
22. Ireland
23. France
24. Iran
25. Austria
26. Turkey
27. Argentina
28. Ukraine
29. Russia
30. Poland
31. Korea
32. China
33. Brazil

2007
1. China
2. Russia
3. Taiwan
4. Poland
5. Korea
6. Germany
7. Thailand
8. India
9. Hungary
10. Slovakia
11. Latvia
12. USA
13. Vietnam
14. UK
15. Belarus
16. Estonia
17. Ukraine
18. Argentina
19. Iran
20. Romania
21. Australia
22. Austria
23. Kazakh
24. Singapore
25. New Zealand
26. Czech
27. Argentina
28. Ukraine
29. Russia
30. Poland
31. Korea
32. China
33. Brazil

2008
1. China
2. Russia
3. Ukraine
4. Korea
5. Thailand
6. Belarus
7. Vietnam
8. Taiwan
9. Hungary
10. Singapore
11. Kazakh
12. Austria
13. Poland
14. Iran
15. India
16. Romania
17. Australia
18. Germany
19. Slovakia
20. Turkey
21. Lithuania
22. Estonia
23. Italy
24. UK
25. Canada
26. Brazil
Ukrainian Chemistry Olympiad

- end of March
- 8-11 forms
- 2 theoretical + experimental tours

~8%: 1st place winners
~17%: 2nd place winners
~25%: 3rd place winners

2nd place winners
Participants of the Chemistry Olympiad
in academic year 2007/2008

http://www-chemo.univer.kharkov.ua/olympiad.htm
Ukrainian Chemistry Olympiad

Aims

- to compensate (to a certain extent) the collapse of the national education system;
- to promote science education in secondary schools;
- to demonstrate that chemistry is not boring and to give possibilities for students to reveal their creativity;
- to help young people from poor families and depressed regions to show themselves.
Ukrainian Chemistry Olympiad

Training
- Syllabus of the Ukrainian olympiad, learning materials, and many tasks are accessible from the web;
- Special textbooks were published;
- Level of tasks for the 11th form takes into account the IChO level;
- Russian translation of the preparatory problems is distributed between best 8 students of the 11th form at the Ukrainian olympiad;
- In May the 10 day training camp in Kharkiv University (lectures, labs, exams);
Ukrainian Chemistry Olympiad

Stimulation
- Entrance in the HEI without exams;
- High scholarships, grants;
- Government awards for school teachers.

Team: balanced union of
- experienced university professors,
- young scientists from Academy of Sciences and business structures, and
- undergraduate students.

The majority of members participated in Ukrainian and International chemistry olympiads.
PROGRAMA NACIONAL OLIMPÍADAS DE QUÍMICA

http://www.obq.ufc.br/

REALIZAÇÃO

Associação Brasileira de Química

PROMOÇÃO

Petrobras

APOIO
Former IChO participants: post-olympiad life

1994: Sergey Kolotilov – PhD, Senior Research Fellow, the Ukrainian Academy of Sciences, Associate Professor at Kiev National University, Ukraine

1995: Yaroslav Filinchuk – PhD, Research Fellow, the Swiss-Norwegian Beam Lines at the European Synchrotron Radiation Facility, Grenoble
Maxim Kryuchkov – organic chemist, Canada
Anton Samoteykin – small-scale private businessman, Ukraine
Konstantin Pasichnichenko – PhD, Postdoctoral Fellow, the USA

1996: Anton Granzhan – PhD, Postdoctoral Fellow, Institute Curie, Paris
Former IChO participants: post-olympiad life

1997: Dmytro Volochnyuk – PhD, Senior Research Fellow, Ukrainian Academy of Sciences, **Ukraine**, Ratmir Derda - PhD, Postdoctoral Fellow, Department of Chemistry and Chemical Biology, Harvard University

1998: Alexander Predeus – PhD, Department of Chemistry, Michigan State University
Oleg Yazev – PhD, Research Associate, Institute of Theoretical Physics, Lausanne

1999: Olexander Grygorenko – PhD, Research Fellow in Kiev University, **Ukraine**, Konstantyn Chernychenko – MSc, leading researcher in the innovation company, Moscow, Maksym Artemov – PhD student, the USA, Sergiy Bukreev – PhD student, Cambridge
Some publications
THANK YOU!