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Lecture Courses:
• Chemical Informatics and 
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• Modern Achievements in 
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Research Activity:
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chemometrics
•Quantitative physico-chemical 
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•Physical and coordination  
chemistry of fynctionalized materials
•Preconcentration and test analysis
•Mathematical and quantum 
chemistry
•Heterogeneous kinetics
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Topics to be discussed:Topics to be discussed:
1. What ia the quantitative physico-chemical analysis 

(QPCA)? Who and why has a need to perform the QPCA 
study?

2. Main steps of the  QPCA. The ill-posed nature of the 
computational step.

3. Two types of the energetic heterogeneity and 
distinguishing them. The numerical estimation of the 
biographic heterogeneity.

4. The data analysis methods applied to handle the primary 
experimental data of the QPCA.

5. Some results of exploring surfacely modified materials by 
the QPCA.
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The quantitative physicochemical analysis is the method to 
determine the stoichiometric composition and stability constants of 
species in equilibrium systems by analyzing the composition–
property dependencies. 

Composition-property dependency:: 

 )nζ(λ,A k*k = , (1) 
A is the measured property (pH, absorbance, distribution coefficient, 

etc); 
k is the number of the studied mixture (experimental point), Nk1 ≤≤ ; 
N is the number of points; 
λ is the analytical position (for example, a wavelength at the 

multiwave spectrophotometry; 

kn*  are the initial quantities of reagents in the k-th mixture (known 
from the conditions of experiment); 

ζ is a function. 

1. What is the quantitative physico-

chemical analysis? 
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Examples of simple composition – property 
dependencies 
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The ion exchange isotherm of K+.  
Plot of the K+ ion molar  fractions in 
the ion exchanger phase ( +Kχ ) against 
its molar  fractions in solution ( +Kχ ). 

Sorption of metal chlorides at the 
surface of chemically modifyed 
silica. Dependence of the inverse 
distrubution coefficients against the 
equilibrium concetrations of the 
 m e t a l  s a l t s  i n  s o l u t i o n .

 



77

From the single composition – property 
dependency the following information may be 
obtained: 

• the number of species present in the systems under the equilibrium 
conditions; 

• the stoichiometric compositions of species; 
• the stability constants of species; 
• the yields of each species dependent on the initial compositions of the 
systems; 

• the intensity factors of the species (such as molar absorbtivities). 
Such information is valuable for choosing optimal conditions of 

separation, isolation, masking, determination of reagents. 
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The stability constants of transition metal complexes with amino-
carbonic acids may be forecasted using regression models: 

 

The comparison of compositions and stabilities of species for related 
systems makes it possible also to do important conclusions about the non-
thermodynamic properties of reagents. Hence, the QPCA supplements 
essentially the structrure-sensitive structural methods. 
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2. The main steps of the QPCA
I. To choose the experimental method, the property(ies) to 

be measured and the initial concentrations of reagents. As a rule, 
the measured property may be presented as 

 [ ]∑
=

=
S

i
kililk LA

1
α ,

where Li are the reagents, [Li]k  is the equilibrium concentration of 
Li in the kth mixture, αli is the intensity factor of Li at the analytical 
position λl. 
 II. To execute the structural identification of the model: to 
find a such form of function ζ, that allows to calculate the equilibrium 
concentrations [Li] from the initial ones. In the simplest case, the 
structure of the model is assigned by the mass-action law and the 
conditions of the material balance. If reactions at the solid/liquid 
interface, ion-exchange processes and so on are considered, the structure 
of the model is to be complicated in an appropriate way. 
 III. To execute the parametric identification of the model: 
to find such values of parameters θ that correspond to the 
“best” (in a certain sense) approximation of the experimental 
data: 
 |θ> = arg min U(θ).

where U measures the goodness of fit.  
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The main difficulties of the parametric identification arise from the 
fact that the composition – property dependency is set by a 
table of values rather than an analytical expression, whilst 
the density of the experimental errors is unknown. 
 
 The inevitable consequences are as follows: 

a) there is no unique set of parameters θ that fits the 
experimental data inside the limits of their errors.  

From the chemical point of view, it means that redundant (non-

existent) complexes with false stability constants may be detected; 

if experimental errors are moderate
the linear approximation 
is unacceptable

if experimental errors are great
the linear approximation 
is acceptable
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a) If all measured values Alk are independent and the density of their 
errors ε is normal (Gaussian), then maximum likelihood principle leads 
to the following criterion function for calculating unknown parameters 
θ: 

 

where wlk is the statistical weight corresponding to variance estimate 
σ2(Alk), ∆lk is the discrepancy, 

 

But we are never convinced that this supposition about normality is valid. 
On the contrary, at least 1/3 of experimental data does not correspond to 
the normal distribution! 

In this case, estimates obtained using the least squares 
method are biased, insignificant and inefficient. 

b) The model adequacy criteria (such as χ2) are more or less reliable also 
in the case of the normal distribution of experimental errors. 

The erroneous conclusion about the adequacy of a bad 
model may be easily made. 
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Conclusions:  
 

• the parametric identification belongs to the ill-
posed problems, and so numerically stable 
(regularized) computational methods 
complemented with the comprehensive analysis 
of the possible redundancy of the model should 
be used; 

• the usually used the least-squares estimates 
have to be verified by application of the robust 
methods insensible to the violation of the 
statistical assumptions; 

• only applying several statistical adequacy criteria 
may ensure the reliable conclusions on the 
adequacy of the models; 

• not standard (universal) but specially developed 
software programs should be used for 
calculations at the QPCA. 
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3. Two types of the energetic heterogeneity and 
distinguishing them. The numerical estimation of the 

biographic heterogeneity

The formation of sorption complex MQ : 

 MQ
K

QM =+ ,

where K is the affinity constant. 
 
The biographic heterogeneity: the degree of occupation 

of binding sites by bonded species does not affect the scope of 
biographic heterogeneity.  

The evolutionary heterogeneity: change of surface 

charge and electrostatic potential in dependence on the ion 

sorption degree. 
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To characterize the energetic heterogeneity it is necessary 
• to measure the dependence of f([M]) on [M]; 
• to postulate a model which allows to separate effects of bio-

graphic and evolutionary heterogeneities; 
• to calculate numerically the model parameters. To perform this 

it is necessary to solve in respect to p(K) the linear first kind 
Fredholm equation: 

 ∫
∞

⋅=
0

local dKp(K)K)([M],θf([M]) ,

where p(K) is the nonnegative differential distribution function of 
affinity constants K; 

the kernel of the integral equation θlocal([M], K) is the local binding 
isotherm. 

 
In the limiting case when both electrostatic effects and lateral 

interactions are negligible, the kernel θlocal([M], K) reduces to the Langmuir 
isotherm 

 θlocal([M], K) = 
[M]K1

[M]K
⋅+

⋅
. 

 This equation is the Fredholm integral equations of the first kind, and 

the search for its solution is the typical example of the ill-posed problem. 
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dK
[M])K(1

[M])K(P([M])1
0

2∫
∞

⋅+
=θ−

Our algorithm CAS deals with the integral distribution function 
and solves another integral equation

The main features of the method are:
a) calculation of the integral distribution function P(K) on the 

compact set of restricted (0 ≤ P(K) ≤ 1) and non-descending 
functions and

b) using alpha-regularization technique to calculate the non-
negative distribution function p(K).

The full description is published in:
Kholin Yu., Myerniy S., Varshal G., Adsorption Science & Technology. 
2000. 18, 267-294.
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The differential distributions of organic amines grafted on silica 

surface on logarithms of protonization constants 
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Estimation of the narrow distribution functions is the most

complicated problem. The novel algorithm proposed by

Dr S. Myerniy and based on the Shannon information theory

solves this problem successfully. 
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The data analysis methods applied to handle the 
primary experimental data of the QPCA

The models based on the mass-action law
 

The methods of the data analysis theory applied to avoid possible errors: 
• cross-validation 
• robust estimation of parameters 
• elimination of the redundant species from the model on the base of the SVD decomposition of 
the Jacobi matrix, studying the correlation coefficients and the equilibrium concentrations
(overcoming the ill-posed nature of the problem) 
 

Cross-validation: 
From the array of the experimental data (N points) the g-th point (only one) is 

excluded, the unknown parameters are calculated and the weighed residues of cross-
validation are found: 

 )AA(wd gg
1/2
gg −⋅=

)
. 

This procedure is repeated for all points and the cross-validation residual variance is 

calculated: ∑
=

=
N

1g

2
g

2
0 ds~ . 
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The hydrolytic equilibria of Sb(III)
(from the data on the Sb(OH)3 solubility) 

lg KS2(Sb(OH)3↓ + H+ = [Sb(OH)2]+ + H2O); 
lg KS3(Sb(OH)3↓ = Sb(OH)3, p-p); 
lg KS4(Sb(OH)3↓ + H2O = [Sb(OH)4]- + H+). 
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The Huber’s М-estimates as the alternative to the least squares method 

р(ε) = [(100 - δ)⋅ϕ(0, σGauss) + δ⋅h(ε)] / 100 
ϕ(0, σGauss) – the density of the Gauss 
distribution, 
h(ε) – the density of gross errors distribution 
(the distribution function with long tails), 
δ –  the percentage of gross errors, %. 
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cξat,)с21(ξс
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ρ(ξ) 2
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If δ → 0 then с = ∞ (the Huber’s M-estimates are the same as the least-squers ones). 
If δ → 100% then c → 0 (the Huber’s M-estimates are the same as the least-modules ones). 
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Hydrolytic equilibria of Au(III)
(from the data on Au(OH)3 solubility) 

 
log KS2(Au(OH)3↓ + H+ = [Au(OH)2]+ + H2O); 
log KS3(Au(OH)3↓ = Au(OH)3,p-p); 
log KS4(Au(OH)3↓ + H2O = [Au(OH)4]- + H+). 
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Variation of the calculated 

M-estimates of log KSi on δ. 

 

 

The accepted values: 
log KS2 = -4.77±0.08; 

log KS3 = -7.64±0.03; 

log KS4 = -14.68±0.15. 



2323

CLINP 2.1: PROGRAM FOR ROBUST PARAMETRIC IDENTIFICATION OF COMPLEXATION MODELS 
http://www.bestnet.kharkov.ua/kholin/clinp.html 

 APPROACH 
• NEW: calculation of parameters on the base of robust Huber's M-estimates; insensivity to outliers;  

• NEW: modified globally convergent and rapid algorithms of Newton and Gauss-Newton methods;  

• NEW: tools for convenient data analysis (grid calculation, cross-validation, SVD decomposition of Jacobi matrix, 
pointing to predominant components, etc.);  

• NEW: adaptive system of data preparation for different experimental methods;  

• easy to handle experimantal data from different methods.  
 
RESULTS  

• logarithms of equilibrium constants for reactions in solutions, extraction systems or sorption systems;  

• covariance matrix and correlation coefficients (multiple, total and partial) for estimated parameters;  

• intensity factors for complexes (e.g. molar absorptivities);  

• local criteria of model adequacy – weighted residuals;  

• global criteria of model adequacy (residual variance, χ2, skewness and kurtosis for distribution of residues, mean 

residual, residual mean);  

• NEW: cross-validation;  

• NEW: diagnostics of the ill-posed (redundant) chemical models;  

• equilibrium concentrations of all reagents at all experimental points;  

• NEW: predominant components.  
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Studying the energetic heterogeneity of 35 silica samples 

with aliphatic amines grafted on the surface 

The distribution functions p(log KH) for amines grafted on silica surface.

 1* corresponds to aminosilica 1 after “heating – cooling” cycle. 
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The system of hydrogen bonds or salt-like products and arched structures at the surface: 
 

S i 
O O

NH2 OH

SiO2SiO2

Si
O O

 A-H               
      N+ 

H O

H 

 
 

Heating accelerates the complete hydration of the sub-surface layer:  

OH H
2
N(CH

2
)
3 + n H2O = O-(H

2
O)nH

3
N+(CH

2
)
3

 
 

The full description was published in 
a)  Kholin Yu., Myerniy S., Varshal G. Adsorption Science & Technology. 2000. 18, 

267-294. 
b)  Kholin Yu., Myerniy S., Shabaeva Y., e.a. Adsorption Science & Technology. 2003, 

21, 53-66. 



2626

The direct evidence of the unrandom surface topography of 
aminosilicas was obtained. 

The absorbance spectra of solvatochromic indicator ET
30 

adsorbed at the aminosilica surface 
 
 

 
 

  
400 500 600 700

0,2

0,4

0,6

0,8

λ,nm

Kubelka-Munk function
medium resembling
water-organic neutral
solutions (high spe-
cific concentration of
dye)

acididc
medium

 
 

Khristenko I.V., Kholin Yu. V., Mchedlov-Petrossyan N.O., 
Probing the surface of aminosilicas by solvatochromic 
betaine Reichardt’s dye, Kharkov Univ. Bul., 2002. No 549. 
Chemical series. Issue 8 (31). 115-118. 
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The QPCA as a tool to explore the thermodynamic features of functionalized silicas
Model of protolytic equilibria Model of complexation equilibria 
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Q is organic amine, grafted on silica surface 
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Approximation on the base of the Pitzer method 
The temperature dependence of the 

thermodynamic protonization constants 
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Marques H., J. Chem. Soc. (Dalton), 1991: 

n-propylamine: ∆H0
298 = –57.4 kJ mol-1, ∆S0

298 = 
17 J mol-1К-1, 

ammonia: ∆H0
298 = –54.1 kJ mol-1, ∆S0

298 = ~0. 
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Fuzzy classification of the uncomplete arrays of data about physico-chemical properties of functionalized materials 
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Another substances and materials studied by the QPCA methodAnother substances and materials studied by the QPCA method

 In cooperation with 

• Humic and fulvic acids and coals 

(protolytic properties, complexation, 

sorption of heavy and noble metals) 

Prof Galyna Varshal and Dr Irina 

Koscheeva (V.I.Vernadskii Institute of 

Geochemistry and Analytical Chemistry, 

Moscow) 

• Silica-organics xerogels (protolytic and 

complexation properties) 

Prof Edilson Benvenutti and Prof Tania 

Kosta (University of Porto Alegre, 

Brazil) 

• Cellulose acetate/Al2O3/inorganic or 

organic ligand hybrid materials 

(sorption and ion exchange) 

Prof Yoshitaka Gushikem (University of 

Campinas, Brazil) 

• Non-covalently immobilized dyes and 

compleximetric indicators (adsorption 

equilibria, complexation, surface 

probing) 

Prof Nykolay Mchedlov-Petrossyan 

(Kharkov University) and Prof Christian 

Reichardt (Philipps University, 

Marburg) 
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