Лабораторна робота №1

ТЕМА: « БАЗИСИ НЕЕМПІРИЧНИХ РОЗРАХУНКІВ. ОПТИМІЗАЦІЯ ГЕОМЕТРІІ МОЛЕКУЛ »

Виконав студент групи БХ-134 Іванов Іван Іванович

Завдання:

Сполука B_2Cl_4 має різну конфігурацію в газовій фазі (симетрія D_2d) і в кристалічному (D₂h) стані. Розрахуйте енергії цих конфігурацій і зіставте геометричні параметри з експериментальними величинами (див. таблицю нижче). Опишіть залежність Гартрі-Фоковскої енергії системи від числа базисних функцій.

Фаза	R(B-Cl), Å	R(B-B), Å	∠ C I–B–Cl, гр ад.	_
Кристал.	1.73 ± 0.02	1.75 ± 0.05	120.5 ± 1.3	
Пар	1.750 ± 0.011	1.70 <mark>2</mark> ± 0.069	118.65 ± 0.66	

Для розрахунку вибираємо двічі і тричі валентно-розшеплені базиси з різною кількістю поляризаційних функцій: 6-31G, 6-31G(d), 6-31G(2d), 6-311G(2d). Така послідовність базисів відповідає систематичному поліпшенню якості розрахунку. Також, з метою дослідження точності вибраних базисів був проведений ряд додаткових розрахунків в розширених базисах: 6-311G(3d), 6-311G(3d,1f), 6-311G(2d), aug-cc-pVTZ.

Структура досліджуваної системи за даними розрахунків в кристалічному і пароподібному стані має вигляд (Рис. 1).

Конфігурація В (пара, D_2d)

Рис. 1. – Геометрія молекули B_2Cl_4 в кристалічному (A) і пароподібному (B) станах за результатами проведених квантово-хімічних розрахунків

Методом Гартрі-Фока розраховуємо енергію і геометричні параметри цих двох конфігурацій. Дані представлені в Табл. 1 і Табл. 2. Для опису геометрії обчислюємо різниці розрахованих і експериментальних параметрів, а також відповідне середньоквадратичне відхилення довжин зв'язків (Root Means Square, RMS). Цю величину можна обчислити за формулою:

RMS =
$$\sqrt{\frac{\sum_{i=1,5} (R_i(calc) - R_i(exp))^2}{5}}$$
, (1)

де R_i(calc) і R_i(exp) – розраховані і експериментальні довжини зв'язків відповідно. Розрахунок (1) ведеться по п'яти точкам.

Таблиця 1. Розраховані характеристики молекули B₂Cl₄ в кристалічному стані (конфігурація A, D₂h). У дужках вказані різниці між розрахованими і експериментальними величинами

	Б	(110			
	Експерим.	6-31G	6-31G(d)	6- 31 G(2d)	6-311G(2d)
Енергія,	_	-1887.3346048	-1887.453889	-1887.462225	-1887.586693
ат. од.					
R _{B-Cl} , Å	1.73 ± 0.02	1.787	1.7497	1.7546	1.7526
		(0.057)	(0.0197)	(0.0246)	(0.0226)
R _{B-B} , Å	1.75 ± 0.05	1.713	1.741	1.737	1.7348
		(-0.037)	(-0.009)	(-0.013)	(-0.0152)
RMS	—	0.054	0.018	0.023	0.021
∠ Cl–B–Cl	120.5 ± 1.3	118.24	118.6	118.4	118.38
		(-2.26)	(-1.9)	(-2.1)	(-2.12)

Таблиця 2. Розраховані характеристики молекули B₂Cl₄ в пароподібному стані (конфігурація B, D₂d). У дужках вказані різниці між розрахованими і експериментальними величинами. В останньому рядку наведена різниця енергій в двох геометричних конфігураціях E(B)-E(A)

	Эксп.	6-31G	6-31G(d)	6-31G(2d)	6-311G(2d)	
Енергія,	-	-1887 339831	-1887 458506	-1887 466904	-1887 591768	
ат. од.		-1007.557051	-1007.450500	-1007.10074	-1007.371700	
R _{B-Cl} , Å	1.750 ± 0.011	1.7890	1.752	1.757	1.755	
		(0.039)	(0.002)	(0.007)	(0.005)	
R _{B-B} , Å	1.702 ± 0.069	1.6844	1.709	1.705	1.701	
		(-0.0176)	(0.007)	(0.003)	(-0.001)	
RMS		0.036	0.004	0.006	0.004	
∠ Cl–B–Cl	118.65 ± 0.66	119.2	119.6	119.5	119.6	
		(0.55)	(0.95)	(0.85)	(0.95)	
E(B)-E(A)	_	2.2	2.0	2.0	2.2	
(ккал/моль)		-3.3	-2.9	-2.9	-3.2	

Дані RMS в обох таблицях говорять про те, що базис 6-31G є дуже грубим. Помилка в обчисленні геометрії досить велика. Базиси 6-31G(d), 6-31G(2d) і 6-311G (2d) дають приблизно однакову точність в описі геометрії і в структурі A (~ 0.01-0.02 Å) і в структурі В (~ 0.001-0.007 Å). Цікаво, що точність опису геометрії в структурі В систематично вище ніж в структурі А. Ця обставина вимагає подальшого дослідження.

Проте, енергетичні різниці E(B)-E(A), ккал/моль (див. Табл. 2, останній рядок) приблизно однакові для всіх використаних базисів ~3 ккал/моль. Тобто відносна точність опису енергій обох систем приблизно однакова у всіх базисах.

З'ясуємо тепер, як змінюється повна енергія системи при збільшенні числа базисних функцій. На рис. 2. представлено графік залежності енергії системи А (відносно енергії в базисі 6-31G - крайня ліва точка) від числа базисних функцій. Можна бачити, що в двічі розщеплених базисах, при додаванні поляризаційних функцій істотно (і різко) знижується енергія системи. Однак, всі тричі розщеплені базиси (включаючи дорогий в сенсі обчислювальних витрат – aug-cc-pVTZ) складають групу з близькими енергіями. Таким чином, можна припустити, що результати розрахунків енергії системи в тричі розщеплених базисах досить близькі до «Гартрі-Фоковскої межі»

Рис. 2.– Енергії (ат. од.) системи В₂Cl₄, в конфігурації А, відносно енергії в базисі 6-31G, в залежності від числа базисних функцій (N_{bas})

висновки

В цілому, проведені розрахунки говорять, що адекватні результати в описі енергетичних характеристик можна отримати навіть в нерозвинених базисах.

1. Базис 6-31G, з усього використаного набору, істотно відрізняється від інших в описі геометрії молекул і є найгіршим.

2. Конформація В нижче за енергією ніж конформація А на ~3 ккал/моль в усіх базисах.

3. Базиси з поляризаційними функціями (6-31G(d), 6-31G(2d) і т. д.) дають приблизно однакові результати як в описі енергетичних характеристик, так і при описі геометрії систем. Тому, з метою економії обчислювальних ресурсів, в подібних завданнях і системах, можна використовувати простіший базис 6-31G(d).

подяки

Автор звіту дякує студентам які прочитали цей звіт

